Piercing families of convex sets in the plane that avoid a certain subfamily with lines

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Daniel McGinnis
{"title":"Piercing families of convex sets in the plane that avoid a certain subfamily with lines","authors":"Daniel McGinnis","doi":"10.1016/j.comgeo.2024.102087","DOIUrl":null,"url":null,"abstract":"<div><p>We define a <span><math><mi>C</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span> to be a family of <em>k</em> sets <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> such that <span><math><mtext>conv</mtext><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∪</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>∩</mo><mtext>conv</mtext><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∪</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>j</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>=</mo><mo>∅</mo></math></span> when <span><math><mo>{</mo><mi>i</mi><mo>,</mo><mi>i</mi><mo>+</mo><mn>1</mn><mo>}</mo><mo>∩</mo><mo>{</mo><mi>j</mi><mo>,</mo><mi>j</mi><mo>+</mo><mn>1</mn><mo>}</mo><mo>=</mo><mo>∅</mo></math></span> (indices are taken modulo <em>k</em>). We show that if <span><math><mi>F</mi></math></span> is a family of compact, convex sets that does not contain a <span><math><mi>C</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span>, then there are <span><math><mi>k</mi><mo>−</mo><mn>2</mn></math></span> lines that pierce <span><math><mi>F</mi></math></span>. Additionally, we give an example of a family of compact, convex sets that contains no <span><math><mi>C</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span> and cannot be pierced by <span><math><mrow><mo>⌈</mo><mfrac><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>−</mo><mn>1</mn></math></span> lines.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772124000099","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We define a C(k) to be a family of k sets F1,,Fk such that conv(FiFi+1)conv(FjFj+1)= when {i,i+1}{j,j+1}= (indices are taken modulo k). We show that if F is a family of compact, convex sets that does not contain a C(k), then there are k2 lines that pierce F. Additionally, we give an example of a family of compact, convex sets that contains no C(k) and cannot be pierced by k21 lines.

平面中避开某线段的凸集穿孔族
我们将 a 定义为这样的集合族,即当(指数取模)时,a 。我们证明,如果是一个不包含 a 的紧凑凸集族,那么就有直线穿透 。此外,我们还给出了一个紧凑凸集合族的例子,它不包含且不能被直线穿透。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信