Peyman Afshani , Rasmus Killmann , Kasper G. Larsen
{"title":"Hierarchical categories in colored searching","authors":"Peyman Afshani , Rasmus Killmann , Kasper G. Larsen","doi":"10.1016/j.comgeo.2024.102090","DOIUrl":null,"url":null,"abstract":"<div><p>In colored range counting (CRC), the input is a set of points where each point is assigned a “color” (or a “category”) and the goal is to store them in a data structure such that the number of distinct categories inside a given query range can be counted efficiently. CRC has strong motivations as it allows data structure to deal with categorical data.</p><p>However, colors (i.e., the categories) in the CRC problem do not have any internal structure, whereas this is not the case for many datasets in practice where hierarchical categories exist or where a single input belongs to multiple categories. Motivated by these, we consider variants of the problem where such structures can be represented. We define two variants of the problem called hierarchical range counting (HCC) and sub-category colored range counting (SCRC) and consider hierarchical structures that can either be a DAG or a tree. We show that the two problems on some special trees are in fact equivalent to other well-known problems in the literature. Based on these, we also give efficient data structures when the underlying hierarchy can be represented as a tree. We show a conditional lower bound for the general case when the existing hierarchy can be any DAG, through a reduction from the orthogonal vectors problem.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0925772124000129/pdfft?md5=58168aae21edfa03ea4bb23171502329&pid=1-s2.0-S0925772124000129-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772124000129","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In colored range counting (CRC), the input is a set of points where each point is assigned a “color” (or a “category”) and the goal is to store them in a data structure such that the number of distinct categories inside a given query range can be counted efficiently. CRC has strong motivations as it allows data structure to deal with categorical data.
However, colors (i.e., the categories) in the CRC problem do not have any internal structure, whereas this is not the case for many datasets in practice where hierarchical categories exist or where a single input belongs to multiple categories. Motivated by these, we consider variants of the problem where such structures can be represented. We define two variants of the problem called hierarchical range counting (HCC) and sub-category colored range counting (SCRC) and consider hierarchical structures that can either be a DAG or a tree. We show that the two problems on some special trees are in fact equivalent to other well-known problems in the literature. Based on these, we also give efficient data structures when the underlying hierarchy can be represented as a tree. We show a conditional lower bound for the general case when the existing hierarchy can be any DAG, through a reduction from the orthogonal vectors problem.
期刊介绍:
Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems.
Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.