用于刚性折纸刚度和柔度分析的面板点模型

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Kentaro Hayakawa , Zeyuan He , Simon D. Guest
{"title":"用于刚性折纸刚度和柔度分析的面板点模型","authors":"Kentaro Hayakawa ,&nbsp;Zeyuan He ,&nbsp;Simon D. Guest","doi":"10.1016/j.comgeo.2024.102100","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we lay the groundwork for a systematic investigation of the rigidity and flexibility of rigid origami by using the mathematical model referred to as the panel-point model. Rigid origami is commonly known as a type of panel-hinge structure where rigid polygonal panels are connected by rotational hinges, and its motion and stability are often investigated from the perspective of its consistency constraints representing the rigidity and connection conditions of panels. In the proposed methodology, vertex coordinates are directly treated as the variables to represent the rigid origami in the panel-point model, and these variables are constrained by the conditions for the out-of-plane and in-plane rigidity of panels. This model offers several advantages including: 1) the simplicity of polynomial consistency constraints; 2) the ease of incorporating displacement boundary conditions; and 3) the straightforwardness of numerical simulation and visualization. It is anticipated that the presented theories in this article are valuable to a broad audience, including mathematicians, engineers, and architects.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Panel-point model for rigidity and flexibility analysis of rigid origami\",\"authors\":\"Kentaro Hayakawa ,&nbsp;Zeyuan He ,&nbsp;Simon D. Guest\",\"doi\":\"10.1016/j.comgeo.2024.102100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we lay the groundwork for a systematic investigation of the rigidity and flexibility of rigid origami by using the mathematical model referred to as the panel-point model. Rigid origami is commonly known as a type of panel-hinge structure where rigid polygonal panels are connected by rotational hinges, and its motion and stability are often investigated from the perspective of its consistency constraints representing the rigidity and connection conditions of panels. In the proposed methodology, vertex coordinates are directly treated as the variables to represent the rigid origami in the panel-point model, and these variables are constrained by the conditions for the out-of-plane and in-plane rigidity of panels. This model offers several advantages including: 1) the simplicity of polynomial consistency constraints; 2) the ease of incorporating displacement boundary conditions; and 3) the straightforwardness of numerical simulation and visualization. It is anticipated that the presented theories in this article are valuable to a broad audience, including mathematicians, engineers, and architects.</p></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925772124000221\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772124000221","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们通过使用称为板点模型的数学模型,为系统研究刚性折纸的刚性和柔性奠定了基础。通常,刚性折纸是一种通过旋转铰链连接刚性多边形面板的面板-铰链结构,其运动和稳定性通常从代表面板刚性和连接条件的一致性约束角度进行研究。在所提出的方法中,顶点坐标被直接视为面板点模型中表示刚性折纸的变量,这些变量受到面板平面外和平面内刚度条件的约束。该模型具有以下几个优点1) 简单的多项式一致性约束;2) 易于纳入位移边界条件;3) 数值模拟和可视化的直接性。预计本文提出的理论对包括数学家、工程师和建筑师在内的广大读者很有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Panel-point model for rigidity and flexibility analysis of rigid origami

In this study, we lay the groundwork for a systematic investigation of the rigidity and flexibility of rigid origami by using the mathematical model referred to as the panel-point model. Rigid origami is commonly known as a type of panel-hinge structure where rigid polygonal panels are connected by rotational hinges, and its motion and stability are often investigated from the perspective of its consistency constraints representing the rigidity and connection conditions of panels. In the proposed methodology, vertex coordinates are directly treated as the variables to represent the rigid origami in the panel-point model, and these variables are constrained by the conditions for the out-of-plane and in-plane rigidity of panels. This model offers several advantages including: 1) the simplicity of polynomial consistency constraints; 2) the ease of incorporating displacement boundary conditions; and 3) the straightforwardness of numerical simulation and visualization. It is anticipated that the presented theories in this article are valuable to a broad audience, including mathematicians, engineers, and architects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信