{"title":"软矩形包装率的界限","authors":"Judith Brecklinghaus, Ulrich Brenner, Oliver Kiss","doi":"10.1016/j.comgeo.2023.102078","DOIUrl":null,"url":null,"abstract":"<div><p><span>We examine rectangle packing problems where only the areas </span><span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span> of the rectangles to be packed are given while their aspect ratios may be chosen from a given interval </span><span><math><mo>[</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>γ</mi></mrow></mfrac><mo>,</mo><mi>γ</mi><mo>]</mo></math></span>. In particular, we ask for the smallest possible size of a rectangle <em>R</em> such that, under these constraints, any collection <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span> of rectangle areas of total size 1 can be packed into </span><em>R</em>. As for standard square packing problems, which are contained as a special case for <span><math><mi>γ</mi><mo>=</mo><mn>1</mn></math></span>, this question leads us to three different answers, depending on whether the aspect ratio of <em>R</em> is given or whether we may choose it either with or without knowing the areas <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span>. Generalizing known results for square packing problems, we provide upper and lower bounds for the size of </span><em>R</em> with respect to all three variants of the problem, which are tight at least for larger values of <em>γ</em>. Moreover, we show how to improve these bounds on the size of <em>R</em> if we restrict ourselves to instances where the largest element in <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is bounded.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounds on soft rectangle packing ratios\",\"authors\":\"Judith Brecklinghaus, Ulrich Brenner, Oliver Kiss\",\"doi\":\"10.1016/j.comgeo.2023.102078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We examine rectangle packing problems where only the areas </span><span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span> of the rectangles to be packed are given while their aspect ratios may be chosen from a given interval </span><span><math><mo>[</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>γ</mi></mrow></mfrac><mo>,</mo><mi>γ</mi><mo>]</mo></math></span>. In particular, we ask for the smallest possible size of a rectangle <em>R</em> such that, under these constraints, any collection <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span> of rectangle areas of total size 1 can be packed into </span><em>R</em>. As for standard square packing problems, which are contained as a special case for <span><math><mi>γ</mi><mo>=</mo><mn>1</mn></math></span>, this question leads us to three different answers, depending on whether the aspect ratio of <em>R</em> is given or whether we may choose it either with or without knowing the areas <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span>. Generalizing known results for square packing problems, we provide upper and lower bounds for the size of </span><em>R</em> with respect to all three variants of the problem, which are tight at least for larger values of <em>γ</em>. Moreover, we show how to improve these bounds on the size of <em>R</em> if we restrict ourselves to instances where the largest element in <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is bounded.</p></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925772123000986\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772123000986","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们研究的矩形打包问题只给出待打包矩形的面积 a1、...、an,而它们的长宽比可以从给定区间 [1γ,γ]中选择。对于作为 γ=1 的特例而包含的标准正方形堆积问题,这个问题有三种不同的答案,取决于 R 的长宽比是给定的,还是可以在知道或不知道面积 a1、...、an 的情况下选择。根据已知的正方形包装问题的结果,我们提供了与问题的所有三个变体有关的 R 大小的上界和下界,这些上界和下界至少对较大的 γ 值是严密的。此外,我们还展示了如果我们将自己限制在 a1、...,an 中最大元素有界的实例中,如何改进 R 大小的这些界值。
We examine rectangle packing problems where only the areas of the rectangles to be packed are given while their aspect ratios may be chosen from a given interval . In particular, we ask for the smallest possible size of a rectangle R such that, under these constraints, any collection of rectangle areas of total size 1 can be packed into R. As for standard square packing problems, which are contained as a special case for , this question leads us to three different answers, depending on whether the aspect ratio of R is given or whether we may choose it either with or without knowing the areas . Generalizing known results for square packing problems, we provide upper and lower bounds for the size of R with respect to all three variants of the problem, which are tight at least for larger values of γ. Moreover, we show how to improve these bounds on the size of R if we restrict ourselves to instances where the largest element in is bounded.
期刊介绍:
Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems.
Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.