Coastal EngineeringPub Date : 2024-09-20DOI: 10.1016/j.coastaleng.2024.104620
WoongHee Jung , Alexandros A. Taflanidis , Norberto C. Nadal-Caraballo , Madison C. Yawn , Luke A. Aucoin
{"title":"Hazard-consistent scenario selection for long-term storm surge risk assessment over extended coastal regions","authors":"WoongHee Jung , Alexandros A. Taflanidis , Norberto C. Nadal-Caraballo , Madison C. Yawn , Luke A. Aucoin","doi":"10.1016/j.coastaleng.2024.104620","DOIUrl":"10.1016/j.coastaleng.2024.104620","url":null,"abstract":"<div><div>The recent destructive hurricane seasons and concerns related to the future influence of climate change have increased the relevance of coastal storm hazards and, in particular, of storm surge hazard estimation when discussing the resilience of coastal communities. This hazard is generally represented as surge inundation probabilities over a large number of individual locations in the geographic domain of interest, and is typically assessed utilizing an ensemble of storm scenarios (i.e., storm events) that are representative of the regional climatology. This paper investigates the storm ensemble selection within this setting, with the objective of identifying a small number of storm scenarios that are consistent with some chosen hazard descriptions over a large geographic region. Beyond the storm events, the occurrence rates (i.e., weights) are also updated. Following past works, a two-stage optimization is adopted for the storm selection. The inner-loop identifies the occurrence rates for a given storm subset, formulating the problem as a linear programming optimization for the sum of absolute deviation for the predicted hazard. The outer-loop searches for the best subset with the desired number of storms, adopting a genetic algorithm integer optimization for minimizing the aforementioned deviation. This work extends this implementation to extended coastal regions, with many locations of interest. In this case, it is computationally intractable to consider all the locations in the domain within the linear programming formulation, and for this reason, a subset of representative locations is chosen through cluster analysis. The hazard description for only these locations is used in the storm ensemble selection. For clustering, different strategies using correlation between locations based on geospatial information, surge response, or a combination of both are examined. Additionally, the correlation in the hazard description is better integrated into the storm selection by establishing a modification of the objective function adopted for the outer optimization loop. Applications to different North Atlantic coastal domains are presented as case studies.</div></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"194 ","pages":"Article 104620"},"PeriodicalIF":4.2,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Coastal EngineeringPub Date : 2024-09-20DOI: 10.1016/j.coastaleng.2024.104618
WoongHee Jung, Alexandros A. Taflanidis
{"title":"Adaptive formulation for probabilistic storm surge predictions through sharing of numerical simulation results across storm advisories","authors":"WoongHee Jung, Alexandros A. Taflanidis","doi":"10.1016/j.coastaleng.2024.104618","DOIUrl":"10.1016/j.coastaleng.2024.104618","url":null,"abstract":"<div><div>As a tropical storm/cyclone approaches landfall, real-time probabilistic predictions for the anticipated surge provide valuable information for emergency preparedness/response decisions. These probabilistic predictions are made through an uncertainty quantification process that involves: (i) generating a sufficiently large ensemble of storm scenarios based on the nominal storm advisory and the anticipated forecast errors; (ii) performing high-fidelity numerical simulations to obtain surge predictions for each storm scenario; and (iii) estimating surge statistics of interest by assembling the simulation results. This process is repeated whenever the nominal storm advisory is updated. The number of storm scenarios utilized in the analysis directly impacts the statistical accuracy of the probabilistic predictions; a larger ensemble improves accuracy but requires greater computational resources to provide predictions with the desired expediency to guide real-time decisions. This paper revisits two recently proposed Monte-Carlo (MC) frameworks that aim to improve accuracy without increasing the computational burden: adaptive importance sampling (AIS) and adaptive multi-fidelity Monte Carlo (AMFMC). The foundational concept behind them is similar: share numerical simulation results across the probabilistic predictions performed for different storm advisories to accelerate the MC estimation. This is achieved differently for each approach, through adaptive development of an importance sampling proposal density (for AIS) or a surrogate model (for AMFMC). Here, a direct comparison between these frameworks is established, focusing on the mechanisms for the information sharing and the challenges encountered in tuning the algorithm adaptive characteristics to provide probabilistic estimates across a large number of quantities of interest (QoIs), corresponding to the surge predictions for different locations within the coastal region of interest. As this large number results in conflicting choices for the adaptive characteristics, a compromise solution needs to be promoted. The efficacy of the two frameworks is examined in detail in this setting, comparing the accuracy of idealized implementations (adaptive decisions independently made for each QoI) to the accuracy of practical implementations (single, compromise decision within the MC implementation). The study also showcases the importance of information sharing across storm advisories in real-time probabilistic storm surge predictions and provides guidelines for an efficient adaptive MC formulation in such settings.</div></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"195 ","pages":"Article 104618"},"PeriodicalIF":4.2,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Super-resolution on unstructured coastal wave computations with graph neural networks and polynomial regressions","authors":"Jannik Kuehn , Stéphane Abadie , Matthias Delpey , Volker Roeber","doi":"10.1016/j.coastaleng.2024.104619","DOIUrl":"10.1016/j.coastaleng.2024.104619","url":null,"abstract":"<div><p>Accurate high-resolution wave forecasts are essential for coastal communities, but local and even coastal coverage is often still missing due to the heavy computational load of modern state-of-the-art wave models. This study presents a machine learning super-resolution approach that drastically reduces the computational effort, while keeping errors negligible for the majority of forecasting applications. The method consists of first computing a wave forecast on a coarse mesh which is then converted to a forecast of finer resolution with the help of machine learning. To demonstrate the feasibility and the potential for practical applications of this approach, we present a case study of a 44-year hindcast along the French Basque coast over an unstructured mesh. We introduce two machine learning approaches, a graph neural network and a polynomial ridge regression and compare their performances in different sea states and spatial environments. Both models exhibit very small prediction errors for the significant wave heights, with Root Mean Square Errors (RMSEs) ranging from 0.3<!--> <!-->cm to 2<!--> <!-->cm, depending on the study region, while being up to 80 times faster than a direct computation of a numerical wave model at the corresponding spatial resolution. To the best of our knowledge, this is the first time that a super-resolution approach is extended to unstructured meshes in the field of coastal sciences.</p></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"194 ","pages":"Article 104619"},"PeriodicalIF":4.2,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378383924001674/pdfft?md5=23dc2f946fda033e032ef29d2590eb83&pid=1-s2.0-S0378383924001674-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142270741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Coastal EngineeringPub Date : 2024-09-18DOI: 10.1016/j.coastaleng.2024.104617
Andrew W. Stevens , Peter Ruggiero , Kai A. Parker , Sean Vitousek , Guy Gelfenbaum , George M. Kaminsky
{"title":"Climate controls on longshore sediment transport and coastal morphology adjacent to engineered inlets","authors":"Andrew W. Stevens , Peter Ruggiero , Kai A. Parker , Sean Vitousek , Guy Gelfenbaum , George M. Kaminsky","doi":"10.1016/j.coastaleng.2024.104617","DOIUrl":"10.1016/j.coastaleng.2024.104617","url":null,"abstract":"<div><div>Coastal jetties are commonly used throughout the world to stabilize channels and improve navigation through inlets. These engineered structures form artificial boundaries to littoral cells by reducing wave-driven longshore sediment transport across inlet entrances. Consequently, beaches adjacent to engineered inlets are subject to large gradients in longshore transport rates and are highly sensitive to changes in wave climate. Here, we quantify annual beach and nearshore sediment volume changes over a 9-yr time period along 80 km of wave-dominated coastlines in the U.S. Pacific Northwest. Beach and nearshore monitoring during the study period (2014–2023) reveal spatially coherent, multi-annual patterns of erosion and deposition on opposing sides of two engineered inlets, indicating a regional reversal of longshore-transport direction. A numerical wave model coupled with a longshore transport predictor was calibrated and validated to explore the causes for the observed spatial and temporal patterns of erosion and deposition adjacent to the inlets. The model results indicate that subtle but important changes in wave direction on seasonal to multi-annual time scales were responsible for the reversal in the net longshore sediment transport direction and opposing patterns of morphology change. Changes in longshore transport direction coincided with a reversal in the Pacific Decadal Oscillation (PDO) climate index, suggesting large-scale, multi-decadal climate variability may influence patterns of waves and sediment dynamics at other sites throughout the Pacific basin.</div></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"194 ","pages":"Article 104617"},"PeriodicalIF":4.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142327449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Coastal EngineeringPub Date : 2024-09-13DOI: 10.1016/j.coastaleng.2024.104616
Wenyang Duan , Lu Zhang , Debin Cao , Xuehai Sun , Xinyuan Zhang , Limin Huang
{"title":"Reconstruction of significant wave height distribution from sparse buoy data by using deep learning","authors":"Wenyang Duan , Lu Zhang , Debin Cao , Xuehai Sun , Xinyuan Zhang , Limin Huang","doi":"10.1016/j.coastaleng.2024.104616","DOIUrl":"10.1016/j.coastaleng.2024.104616","url":null,"abstract":"<div><div>Significant wave height plays a crucial role in influencing marine ecosystems, ocean shipping, and other maritime activities. The distribution of buoy observation data tends to be sparse. Gridded wave data obtained through numerical simulation typically offer broader applicability, albeit with higher computational demands. In this paper, a deep learning model based on Full Connected and Convolutional Neural Networks is proposed, utilizing sparse buoy observation data as input to reconstruct the distribution of significant wave height in the sea area. The model reconstruction results are validated using ERA5 data, demonstrating excellent performance. Additionally, we explore the influence of the model's spatial boundaries and the number of input buoys on reconstruction accuracy, as well as the adaptability of the model to different sea areas. This study provides a novel method and approach for the rapid and cost-effective retrieval of regional significant wave height.</div></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"194 ","pages":"Article 104616"},"PeriodicalIF":4.2,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142310471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Coastal EngineeringPub Date : 2024-09-12DOI: 10.1016/j.coastaleng.2024.104615
Margaret Libby , Tori Tomiczek , Daniel Cox , Pedro Lomónaco
{"title":"The sum of the parts: Green, gray, and green-gray infrastructure to mitigate wave overtopping","authors":"Margaret Libby , Tori Tomiczek , Daniel Cox , Pedro Lomónaco","doi":"10.1016/j.coastaleng.2024.104615","DOIUrl":"10.1016/j.coastaleng.2024.104615","url":null,"abstract":"<div><p>Hybrid approaches to shoreline protection, where natural (“green”) features are combined with hardened (“gray”) infrastructure, are increasingly used to protect coastlines from erosion and flood-based hazards. Our understanding of hybrid systems is limited, and it is unknown whether the components of these systems interact in any meaningful sense to provide flood reduction benefits that are greater or less than “the sum of the parts.” In this study, a large-scale physical model was used to investigate the overtopping of a vertical wall protected by a hybrid system where an idealized <em>Rhizophora</em> mangrove forest of moderate cross-shore width fronted a rubble-mound revetment. Configurations included the wall alone, the wall with a low- or intermediate-density mangrove forest without the revetment, the wall with the revetment, and the wall with an intermediate- or high-density mangrove forest and the revetment. The study isolated the reduction in overtopping of the wall by the revetment component, the mangrove forest component, and the interaction between the components of the hybrid system. The total reduction by the hybrid system was estimated within 5% accuracy as the sum of the reduction by each component minus the product of the component reductions. Comparison of the proportional reduction in overtopping by the mangrove forest on the wall alone and the wall with the revetment indicated that the mangrove forest reduced the overtopping of the revetment by approximately the same proportion that the forest reduced the overtopping of the wall. Therefore, (1) total overtopping reduction by the hybrid system was modeled as the reduction expected from the green and gray components in series. Additional analysis showed that (2) for the same wave conditions, a mangrove forest of moderate cross-shore width can have equal or greater protective benefits than a coastal revetment, (3) there is an exponential relationship between the discharge rate and the forest density, and (4) the mangrove forest, the revetment, and the hybrid system all provided greater reduction in overtopping as wave steepness increased. The tests in this study were conducted without wave breaking, with constant freeboard and water depth, with a specific revetment geometry, and without a mangrove canopy. Therefore, these results should be interpreted with caution if used for engineering design.</p></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"194 ","pages":"Article 104615"},"PeriodicalIF":4.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142238442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Coastal EngineeringPub Date : 2024-09-06DOI: 10.1016/j.coastaleng.2024.104614
Qianze Zhuang, Dezhi Ning, Robert Mayon, Yu Zhou
{"title":"Experimental and numerical investigation of a land-fixed breakwater-type wave energy converter: An OWC device and a porous plate","authors":"Qianze Zhuang, Dezhi Ning, Robert Mayon, Yu Zhou","doi":"10.1016/j.coastaleng.2024.104614","DOIUrl":"10.1016/j.coastaleng.2024.104614","url":null,"abstract":"<div><p>To further promote the commercialization of oscillating water column (OWC) devices and expand their application to coastal protection, it is crucial to enhance their survivability as much as possible while improving the wave energy conversion efficiency. In the present study, the hydrodynamic performance of a land-fixed, breakwater-type wave energy converter combining an OWC device and a porous plate was investigated. A series of physical experiments and numerical simulations were conducted to systematically verify each other and select the proper porosity of the porous plate and the gap spacing. On this basis, the effects of wave nonlinearity on hydrodynamic efficiency and wave-induced forces were comprehensively evaluated. The results indicate that under high frequency wave conditions, the porous plate can significantly reduce horizontal forces on the front wall with limited efficiency reduction. This phenomenon is more pronounced under the strong wave nonlinearity. The maximum reduction in horizontal force can reach 52%. At low wave frequencies, the effect of the porous plate is limited as the horizontal forces on the front wall are similar to those without the porous plate. The energy conversion efficiency increases in low frequency wave conditions because the porous plate assists first-order wave energy to enter the chamber by reducing the transfer of wave energy to high-order waves. In addition, due to the dissipation of wave energy by the porous plate, the wave reflection coefficient decreases and the wave dissipation coefficient increases in all cases.</p></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"194 ","pages":"Article 104614"},"PeriodicalIF":4.2,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378383924001625/pdfft?md5=d6406dbdb14db265202de0042a68f3c5&pid=1-s2.0-S0378383924001625-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142167158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Coastal EngineeringPub Date : 2024-08-31DOI: 10.1016/j.coastaleng.2024.104603
Faidon Diakomopoulos , Alessandro Antonini , Alexander Maria Rogier Bakker , Laura Maria Stancanelli , Markus Hrachowitz , Elisa Ragno
{"title":"Probabilistic characterizations of flood hazards in deltas: Application to Hoek van Holland (Netherlands)","authors":"Faidon Diakomopoulos , Alessandro Antonini , Alexander Maria Rogier Bakker , Laura Maria Stancanelli , Markus Hrachowitz , Elisa Ragno","doi":"10.1016/j.coastaleng.2024.104603","DOIUrl":"10.1016/j.coastaleng.2024.104603","url":null,"abstract":"<div><p>Coastal flooding events pose a critical risk in delta areas, since they are characterized by population growth and urban expansion. A better understanding of Extreme Water Levels (EWLs), the mechanisms generating them, and their components, i.e., astronomical tide and storm surge is of great importance as they drive the maintenance and design of flood protection systems. Therefore, a statistical investigation of them can provide new insights for more reliable flood risk mitigation infrastructures. In this study, we analyse these components and compare different probabilistic methods i.e., univariate extreme value analysis, copula functions, and Joint Probability Method (JPM) for the better estimation of EWLs. We use Hoek van Holland (NL) as a representative case study, since the dynamic conditions of this deltaic environment with man-made infrastructures render the area of strategic importance. The results indicate that a more accurate estimate of the declustering time between extreme events can be achieved using correlation of high surges and high wind speeds, taking into consideration also the wind direction. In the Southwest Delta this time estimated to be around 4 days. Furthermore, the EWLs components, i.e., surge and astronomical tide, show negative dependence. From the comparison between statistical approaches to model EWLs, results show that EWLs estimated via EVA and JPM do not vary significantly, while copulas’ seems to outperform the other methods. However, the selection of the proper copula to show the dependence is critical. As a conclusion, the analysis of the dependence between tides and storm surges can lead to more robust inferences of EWLs.</p></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"194 ","pages":"Article 104603"},"PeriodicalIF":4.2,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378383924001510/pdfft?md5=70e86f1515cfbb9ad32601979f014c59&pid=1-s2.0-S0378383924001510-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142129634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Coastal EngineeringPub Date : 2024-08-30DOI: 10.1016/j.coastaleng.2024.104604
Jian Yang , Yu Chen , Yanan Tang , Zhongdong Duan , Guirong Yan , Jinping Ou , Ting Gong , Zhe Yang , Jianming Yin
{"title":"Evaluations of storm tide hazard along the coast of China using synthetic dynamic tropical cyclone events","authors":"Jian Yang , Yu Chen , Yanan Tang , Zhongdong Duan , Guirong Yan , Jinping Ou , Ting Gong , Zhe Yang , Jianming Yin","doi":"10.1016/j.coastaleng.2024.104604","DOIUrl":"10.1016/j.coastaleng.2024.104604","url":null,"abstract":"<div><p>Concurring with high astronomical tides, storm surges have caused devastating damage in low-lying areas along the Chinese coastal regions. However, accurately calculating tropical cyclone (TC) storm tide hazards, especially those with long return periods, has proven challenging due to limited temporal and spatial information on TCs. In this study, we adopt the Synthetic Dynamic TC Method (SDTM), which enables a more robust estimation of storm tide hazards by generating a large number of synthetic TCs based on historical best track data and ocean-atmosphere environmental data. Within the SDTM framework, synthetic TCs corresponding to 10,000 years are validated using several statistical metrics, and the associated storm tides are simulated. For comparison, we employ the Historical Storm Method (HSM) to simulate storm tides for historical TCs from 1950 to 2019. Storm tide hazard curves are calculated and compared using these two methods. Our results demonstrate that the SDTM can robustly estimate storm tide hazards for both short and long return periods, whereas the HSM performs well for short return periods but struggles to reliably assess storm tide hazards for long return periods. Notably, within the SDTM, storm tide height exhibits nonlinear growth with increasing return periods in the Gumbel plot, a phenomenon not observed in the HSM due to the limited time span of TC records. With sufficient TC data, the spatial storm tide hazard maps obtained from the SDTM can serve as a robust foundation for developing disaster prevention and mitigation policies.</p></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"194 ","pages":"Article 104604"},"PeriodicalIF":4.2,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Coastal EngineeringPub Date : 2024-08-30DOI: 10.1016/j.coastaleng.2024.104602
M.A. van der Lugt , M.A. de Schipper , A.J.H.M. Reniers , B.G. Ruessink
{"title":"Parametrizing nonlinearity in orbital velocity at fetch-limited, low-energy beaches","authors":"M.A. van der Lugt , M.A. de Schipper , A.J.H.M. Reniers , B.G. Ruessink","doi":"10.1016/j.coastaleng.2024.104602","DOIUrl":"10.1016/j.coastaleng.2024.104602","url":null,"abstract":"<div><p>Wave nonlinearity plays an important role in cross-shore beach morphodynamics and is often parameterized in engineering-type morphodynamic models through a nonlinear relationship with the Ursell number. It is not evident that the relationship established in previous studies also holds for sheltered sites with fetch-limited seas as they are more prone to effects of local winds and currents, the waves are generally steeper, and the beaches are typically reflective. This study investigates near-bed orbital velocity nonlinearity from wave records collected at two sheltered beaches in The Netherlands and contrasts them to earlier observations made along the exposed, wave-dominated North Sea coast. Our observations at sheltered beaches show that the Ursell number has comparable skill in predicting wave nonlinearity as it has on previously studied exposed coasts. However, the orbital velocities at sheltered coasts are more asymmetric for the same Ursell number than on exposed coasts. When exposed coast data were examined for moments with comparable high-steepness waves, a similar effect on asymmetry was observed. In addition, following and opposing winds were found to have a clear relationship with total nonlinearity, while they did not affect the phase between skewness and asymmetry at the sheltered beaches. Refitting the free parameters of an Ursell-based predictor improved the bias for the asymmetry parameterization. Whether this has implications for modeling of the magnitude of wave-nonlinearity-driven sediment transport using engineering type models is strongly dependent on the sediment transport formulation used, as these formulations depend on additional calibration coefficients too.</p></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"194 ","pages":"Article 104602"},"PeriodicalIF":4.2,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378383924001509/pdfft?md5=656968cb242d98c3dbc80e12f2d48830&pid=1-s2.0-S0378383924001509-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142136885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}