Lukas Ahrenbeck , Oliver Lojek , Johannes Schattmann , Björn Mehrtens , Constantin Schweiger , Viktoria Kosmalla , David Schürenkamp , Nils Goseberg
{"title":"代根系统建模-混合沙丘加固","authors":"Lukas Ahrenbeck , Oliver Lojek , Johannes Schattmann , Björn Mehrtens , Constantin Schweiger , Viktoria Kosmalla , David Schürenkamp , Nils Goseberg","doi":"10.1016/j.coastaleng.2025.104835","DOIUrl":null,"url":null,"abstract":"<div><div>Coastal dunes are a critical natural defense against storm surges and sea level rise, yet their stability is increasingly compromised by intensified hydrodynamic forces. To withstand stronger and more frequent storm surges as a result of climate change, engineered natural coastal barriers play an important role. This study systematically investigates the potential of artificial root system surrogates based on the root structure of <em>Ammophila arenaria</em> to augment dune stability under simulated storm surge conditions. Laboratory experiments were conducted in a 1.0<!--> <!-->m wide and 90.0<!--> <!-->m long wave flume, replicating the geomorphological characteristics of a dune profile from Sankt Peter-Ording, Germany, at a scale of 1:7. Three surrogate materials (i) coir grid, (ii) basalt grid, and (iii) coir mat were evaluated across three distinct placement configurations (Crest-only, Crest-Slope and Crest-Slope-Foot) under hydrodynamic regimes corresponding to collision, minor overwash, and heavy overwash. High-resolution 3D-lidar scanning provided quantitative, continuous assessments of erosion volumes and dune profile changes. The experimental results indicate that the flexibility of the materials, particularly coir grid and coir mat, substantially mitigates erosion through attenuation of incoming waves and sediment retention, while the relatively stiffer basalt grid exhibits inferior performance. Comparative analyses of small-scale experiments demonstrate that strategically designed artificial root systems can reduce erosion by 13.3<!--> <!-->% to 47.6<!--> <!-->%, thereby matching or surpassing the 23<!--> <!-->% to 40<!--> <!-->% reductions documented for natural vegetation. These findings provide critical insights for advancing nature-based coastal defense strategies and highlight the necessity for further large-scale investigations to refine material properties and deployment configurations.</div></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"202 ","pages":"Article 104835"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surrogate root system modeling — A hybrid dune reinforcement\",\"authors\":\"Lukas Ahrenbeck , Oliver Lojek , Johannes Schattmann , Björn Mehrtens , Constantin Schweiger , Viktoria Kosmalla , David Schürenkamp , Nils Goseberg\",\"doi\":\"10.1016/j.coastaleng.2025.104835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Coastal dunes are a critical natural defense against storm surges and sea level rise, yet their stability is increasingly compromised by intensified hydrodynamic forces. To withstand stronger and more frequent storm surges as a result of climate change, engineered natural coastal barriers play an important role. This study systematically investigates the potential of artificial root system surrogates based on the root structure of <em>Ammophila arenaria</em> to augment dune stability under simulated storm surge conditions. Laboratory experiments were conducted in a 1.0<!--> <!-->m wide and 90.0<!--> <!-->m long wave flume, replicating the geomorphological characteristics of a dune profile from Sankt Peter-Ording, Germany, at a scale of 1:7. Three surrogate materials (i) coir grid, (ii) basalt grid, and (iii) coir mat were evaluated across three distinct placement configurations (Crest-only, Crest-Slope and Crest-Slope-Foot) under hydrodynamic regimes corresponding to collision, minor overwash, and heavy overwash. High-resolution 3D-lidar scanning provided quantitative, continuous assessments of erosion volumes and dune profile changes. The experimental results indicate that the flexibility of the materials, particularly coir grid and coir mat, substantially mitigates erosion through attenuation of incoming waves and sediment retention, while the relatively stiffer basalt grid exhibits inferior performance. Comparative analyses of small-scale experiments demonstrate that strategically designed artificial root systems can reduce erosion by 13.3<!--> <!-->% to 47.6<!--> <!-->%, thereby matching or surpassing the 23<!--> <!-->% to 40<!--> <!-->% reductions documented for natural vegetation. These findings provide critical insights for advancing nature-based coastal defense strategies and highlight the necessity for further large-scale investigations to refine material properties and deployment configurations.</div></div>\",\"PeriodicalId\":50996,\"journal\":{\"name\":\"Coastal Engineering\",\"volume\":\"202 \",\"pages\":\"Article 104835\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coastal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378383925001401\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378383925001401","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Surrogate root system modeling — A hybrid dune reinforcement
Coastal dunes are a critical natural defense against storm surges and sea level rise, yet their stability is increasingly compromised by intensified hydrodynamic forces. To withstand stronger and more frequent storm surges as a result of climate change, engineered natural coastal barriers play an important role. This study systematically investigates the potential of artificial root system surrogates based on the root structure of Ammophila arenaria to augment dune stability under simulated storm surge conditions. Laboratory experiments were conducted in a 1.0 m wide and 90.0 m long wave flume, replicating the geomorphological characteristics of a dune profile from Sankt Peter-Ording, Germany, at a scale of 1:7. Three surrogate materials (i) coir grid, (ii) basalt grid, and (iii) coir mat were evaluated across three distinct placement configurations (Crest-only, Crest-Slope and Crest-Slope-Foot) under hydrodynamic regimes corresponding to collision, minor overwash, and heavy overwash. High-resolution 3D-lidar scanning provided quantitative, continuous assessments of erosion volumes and dune profile changes. The experimental results indicate that the flexibility of the materials, particularly coir grid and coir mat, substantially mitigates erosion through attenuation of incoming waves and sediment retention, while the relatively stiffer basalt grid exhibits inferior performance. Comparative analyses of small-scale experiments demonstrate that strategically designed artificial root systems can reduce erosion by 13.3 % to 47.6 %, thereby matching or surpassing the 23 % to 40 % reductions documented for natural vegetation. These findings provide critical insights for advancing nature-based coastal defense strategies and highlight the necessity for further large-scale investigations to refine material properties and deployment configurations.
期刊介绍:
Coastal Engineering is an international medium for coastal engineers and scientists. Combining practical applications with modern technological and scientific approaches, such as mathematical and numerical modelling, laboratory and field observations and experiments, it publishes fundamental studies as well as case studies on the following aspects of coastal, harbour and offshore engineering: waves, currents and sediment transport; coastal, estuarine and offshore morphology; technical and functional design of coastal and harbour structures; morphological and environmental impact of coastal, harbour and offshore structures.