Alberto Fernandez-Perez , Javier L. Lara , Iñigo J. Losada
{"title":"Flexible adaptation strategies for managing compound climate change risks in port infrastructures","authors":"Alberto Fernandez-Perez , Javier L. Lara , Iñigo J. Losada","doi":"10.1016/j.coastaleng.2025.104844","DOIUrl":null,"url":null,"abstract":"<div><div>Port infrastructures are increasingly exposed to the impacts of compound climate hazards, yet current adaptation strategies often lack the flexibility required to deal with uncertain future conditions. This study presents a novel framework to design flexible adaptation strategies for port infrastructures, integrating compound climate risk assessment with an operational monitoring strategy. The framework identifies key climate drivers and their interactions, evaluates adaptation options, and defines a set of signposts, tipping points, and triggers to inform timely decision-making. The approach is applied to a case study at the Port of Llanes (Spain), demonstrating how adaptation options can be prioritized and adjusted in response to evolving climate risks. Results highlight the relevance of monitoring the combined effects of waves, sea level, and wind to anticipate infrastructure failures and service disruptions. This work offers an actionable methodology that port authorities can integrate into master plans to ensure climate-resilient operations, while providing a scalable tool for other critical coastal infrastructures.</div></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"202 ","pages":"Article 104844"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378383925001498","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Port infrastructures are increasingly exposed to the impacts of compound climate hazards, yet current adaptation strategies often lack the flexibility required to deal with uncertain future conditions. This study presents a novel framework to design flexible adaptation strategies for port infrastructures, integrating compound climate risk assessment with an operational monitoring strategy. The framework identifies key climate drivers and their interactions, evaluates adaptation options, and defines a set of signposts, tipping points, and triggers to inform timely decision-making. The approach is applied to a case study at the Port of Llanes (Spain), demonstrating how adaptation options can be prioritized and adjusted in response to evolving climate risks. Results highlight the relevance of monitoring the combined effects of waves, sea level, and wind to anticipate infrastructure failures and service disruptions. This work offers an actionable methodology that port authorities can integrate into master plans to ensure climate-resilient operations, while providing a scalable tool for other critical coastal infrastructures.
期刊介绍:
Coastal Engineering is an international medium for coastal engineers and scientists. Combining practical applications with modern technological and scientific approaches, such as mathematical and numerical modelling, laboratory and field observations and experiments, it publishes fundamental studies as well as case studies on the following aspects of coastal, harbour and offshore engineering: waves, currents and sediment transport; coastal, estuarine and offshore morphology; technical and functional design of coastal and harbour structures; morphological and environmental impact of coastal, harbour and offshore structures.