M. D. Smolikov, V. A. Shkurenok, S. S. Yablokova, K. V. Kazantsev, T. I. Gulyaeva, I. V. Muromtsev, A. V. Lavrenov
{"title":"Porous Alumina-Supported Tungstated Zirconia Catalysts for Heptane Isomerization","authors":"M. D. Smolikov, V. A. Shkurenok, S. S. Yablokova, K. V. Kazantsev, T. I. Gulyaeva, I. V. Muromtsev, A. V. Lavrenov","doi":"10.1134/S207005042470003X","DOIUrl":"10.1134/S207005042470003X","url":null,"abstract":"<p>Novel WO<sub>3</sub>–ZrO<sub>2</sub> (WZ) catalysts with palladium as an active metal on porous alumina supports of various phase compositions have been synthesized. Aluminas from Sasol molded in the form of extrudates (E) and spherical aluminas (S), in which the phase composition is presented by θ-Al<sub>2</sub>O<sub>3</sub>, δ-Al<sub>2</sub>O<sub>3</sub>, and α-Al<sub>2</sub>O<sub>3</sub> alumina, have been used as supports. It has been shown that the phase composition of the support has a significant effect on the activity of supported Pd/WZ catalysts based on it. Upon transition from a set of θ- and δ-Al<sub>2</sub>O<sub>3</sub> phases to the θ- and α-Al<sub>2</sub>O<sub>3</sub> phase composition has led to an increase in the activity of the catalysts, as evidenced by a shift of 10–30°C in the temperature dependences of the heptane conversion to lower temperatures. The appearance of the α-Al<sub>2</sub>O<sub>3</sub> phase is accompanied by a decrease in the specific surface area of the catalysts, which leads to an increase in the density of acid sites and, as a consequence, a change in activity. The Pd/WZ catalysts supported on S aluminas are characterized by a higher acidity (3.7–6.3 μmol/m<sup>2</sup>) as compared to the samples supported on E aluminas (2.8–3.6 µmol/m<sup>2</sup>). The high acidity of the Pd/WZ/S catalysts intensifies the heptane cracking side reactions to form gaseous C<sub>1</sub>–C<sub>4</sub> hydrocarbons. In turn, the moderate acidity of the Pd/WZ/E catalysts contributes to a higher selectivity to heptane isomers (89.2–89.3% at a heptane conversion of 81.5–83.2%) as compared to the catalysts supported on S supports (isomerization selectivity of 84.9–85.6% at a heptane conversion of 80.4–81.4%).</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"16 2","pages":"133 - 140"},"PeriodicalIF":0.7,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141168009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. E. Nikulina, V. S. Derevshchikov, V. P. Pakharukova, P. V. Snytnikov, D. I. Potemkin
{"title":"Effect of the Composition and Synthesis Method on the Sorption Properties of NaNO3/MgO Sorbents with Respect to Carbon Dioxide","authors":"I. E. Nikulina, V. S. Derevshchikov, V. P. Pakharukova, P. V. Snytnikov, D. I. Potemkin","doi":"10.1134/S2070050424700016","DOIUrl":"10.1134/S2070050424700016","url":null,"abstract":"<p>In this work, sorbents based on magnesium oxide MgO modified with NaNO<sub>3</sub> taken in a concentration of 5–50 mol % have been synthesized and studied by various methods. It has been shown that the optimum synthesis method is impregnation of the MgO precursor. The optimum concentration of NaNO<sub>3</sub> as a modifier is 10 mol %; this concentration provides a sorption capacity of 6.5 mmol CO<sub>2</sub>/g<sub>sorb</sub> within 1 h of sorption at 320°C and a CO<sub>2</sub> content of 50 vol %. The sorption capacity achieved in 10 consecutive sorption–desorption cycles for 10 mol % NaNO<sub>3</sub> is 4.5–5.5 mmol CO<sub>2</sub>/g<sub>sorb</sub> within 30 min of sorption at 50 vol % CO<sub>2</sub> and temperatures of 300 and 350°C for the sorption and desorption stages, respectively. It has been found that an increase in the total sorption pressure to 10 atm makes it possible to decrease the sorption temperature to 220–260°C, and the achieved sorption capacity is 4.0 mmol CO<sub>2</sub>/g<sub>sorb</sub> at 25 vol % CO<sub>2</sub>, which is almost 2 times higher than the sorption capacity value at 1 atm. It has been shown that treatment with steam and hydrogen does not lead to a significant change in the sorption properties and phase composition of MgO modified with NaNO<sub>3</sub>.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"16 2","pages":"111 - 122"},"PeriodicalIF":0.7,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141168006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. A. Bolotov, A. E. Kibilyuk, V. N. Parmon, V. N. Panchenko, M. N. Timofeeva
{"title":"Use of Microwave Irradiation to Synthesize Solketal from Glycerol and Acetone","authors":"V. A. Bolotov, A. E. Kibilyuk, V. N. Parmon, V. N. Panchenko, M. N. Timofeeva","doi":"10.1134/S2070050424700053","DOIUrl":"10.1134/S2070050424700053","url":null,"abstract":"<p>It has been shown that solketal can be synthesized from glycerol and acetone irradiation in the presence of montmorillonite (MM) modified with an aqueous solution of 0.25 mol/L of HCl (0.25M HCl/MM). The reaction has been studied in a methanol solution at an acetone/glycerol molar ratio of 2.45–7.53, a catalyst concentration of 1.2–2.8 wt % (based on glycerol weight), and 30–56°C. It has been shown that solketal is the major product with a selectivity of 96.1–99.2%. The maximum solketal yield of 91.3% with a 98.6% selectivity is obtained within 15 min of reaction at an acetone/glycerol molar ratio of 7.53, a catalyst loading of 2.3 wt % (based on glycerol weight), and 56°C. The catalytic properties of 0.25M HCl/MM in the reaction under microwave and thermal heating conditions have been compared. It has been shown that the solketal yield in the reaction under MW irradiation is 2 times higher than that in the process with thermal heating.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"16 2","pages":"152 - 160"},"PeriodicalIF":0.7,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141168130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. A. Nepomnyashchii, E. R. Saibulina, E. A. Buluchevskiy, T. I. Gulyaeva, V. L. Yurpalov, R. M. Mironenko, O. V. Potapenko, A. V. Lavrenov
{"title":"Combined Deoxygenation and Isomerization of Sunflower Oil Fatty Acid Triglycerides on Pt/Al2O3-Zeolite Catalysts","authors":"A. A. Nepomnyashchii, E. R. Saibulina, E. A. Buluchevskiy, T. I. Gulyaeva, V. L. Yurpalov, R. M. Mironenko, O. V. Potapenko, A. V. Lavrenov","doi":"10.1134/S2070050424700077","DOIUrl":"10.1134/S2070050424700077","url":null,"abstract":"<p>The authors study the effect of the type of zeolite (SAPO-11, ZSM-22, ZSM-23, and ZSM-12) in a support (ratio zeolite : Al<sub>2</sub>О<sub>3</sub> = 30 : 70) on the physicochemical properties of Pt/Al<sub>2</sub>O<sub>3</sub>-zeolite catalysts and the composition of products from the hydrodeoxygenation of sunflower oil on them. The possibility of the complete hydrodeoxygenation of sunflower oil at temperatures of 320–350°C, a pressure of 4 MPa, and a weight hourly space velocity (WHSV) of 1 h<sup>−1</sup> is shown with 75–82% yields of liquid products. The fraction of <i>iso</i>-alkanes and the yield of direct hydrodeoxygenation products grow along with the concentration of Brønsted acid sites in a catalyst in the order 1%Pt/Al<sub>2</sub>O<sub>3</sub>-ZSM-22 < 1%Pt/Al<sub>2</sub>O<sub>3</sub>-ZSM-12 < 1%Pt/Al<sub>2</sub>O<sub>3</sub>-ZSM-23 < 1%Pt/Al<sub>2</sub>O<sub>3</sub>-SAPO-11.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"16 2","pages":"170 - 177"},"PeriodicalIF":0.7,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141168008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. E. Yakovenko, M. R. Agliullin, I. N. Zubkov, O. D. Denisov, D. V. Serebrennikov, B. I. Kutepov, A. L. Maksimov
{"title":"Diesel Fraction Isodewaxing in the Presence of Granular Platinum-Containing SAPO-11 and SAPO-41 Molecular Sieves","authors":"R. E. Yakovenko, M. R. Agliullin, I. N. Zubkov, O. D. Denisov, D. V. Serebrennikov, B. I. Kutepov, A. L. Maksimov","doi":"10.1134/S2070050424700089","DOIUrl":"10.1134/S2070050424700089","url":null,"abstract":"<p>In this paper, the physicochemical and catalytic properties of SAPO-11 and SAPO-41 molecular sieves granulated with a binder material and promoted with 0.5 wt % Pt have been studied in the isodewaxing of a hydrotreated diesel fraction. It has been shown that the introduction of ~30 wt % of boehmite, which transforms into alumina under calcination, into the granules leads to a decrease in the micropore volume by 50–70% and an increase in the external specific surface area of the material by 6–12% as compared to the highly dispersed samples of the above molecular sieves. It has been found that, at 340°C, 3 MPa, 2.0 h<sup>−1</sup>, and H<sub>2</sub>/feedstock = 800 m<sup>3</sup>/m<sup>3</sup>, both samples of bifunctional catalysts provide the production of diesel fuel with a pour point of –42°C and a yield of ~91–92 wt %.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"16 2","pages":"178 - 186"},"PeriodicalIF":0.7,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141168075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. A. Nepomnyashchii, V. L. Yurpalov, E. A. Buluchevskiy, V. A. Drozdov, T. I. Gulyaeva, R. M. Mironenko, A. V. Lavrenov
{"title":"Hydrodeoxygenation of Sunflower Oil on Pt/WOx-Al2O3 Catalyst","authors":"A. A. Nepomnyashchii, V. L. Yurpalov, E. A. Buluchevskiy, V. A. Drozdov, T. I. Gulyaeva, R. M. Mironenko, A. V. Lavrenov","doi":"10.1134/S2070050424700090","DOIUrl":"10.1134/S2070050424700090","url":null,"abstract":"<p>The authors study the effect of the tungsten oxide in the supports of 0.5% Pt/WO<sub><i>x</i></sub>-Al<sub>2</sub>O<sub>3</sub> catalysts on their acidity, deposited platinum dispersity, and catalytic properties in the hydrodeoxygenation of sunflower oil. It is shown that the of Brønsted acid sites on its surface grows, and the dispersity of deposited platinum in the ready catalyst is reduced when the content of the modifier is increased. The studied samples ensure complete sunflower oil conversion in a hydrogen atmosphere at a liquid weight hourly space velocity (WHSV) of 1 h<sup>−1</sup>, a temperature of 380°C, and a total pressure of 4 MPa the composition of the support. A nearly stoichiometric yield of C<sub>5+</sub> products at a level of 82–86 wt % is attained. The acidic properties of the 0.5% Pt/WO<sub><i>x</i></sub>-Al<sub>2</sub>O<sub>3</sub> system determine the possibility for synthesizing the components of diesels with high contents of <i>iso</i>-alkanes as a result of sunflower oil hydrodeoxygenation. Using a catalyst with a nominal tungsten content of 15 wt % WO<sub>3</sub> brings the content of <i>iso</i>-paraffins up to 74% with complete conversion of the initial feedstock for no less than 24 h.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"16 2","pages":"187 - 195"},"PeriodicalIF":0.7,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141173170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"“Sowing in Science Brings a Rich Harvest for the People.” Life and Work of S. A. Fokin","authors":"R. M. Mironenko, A. V. Lavrenov","doi":"10.1134/S2070050424700107","DOIUrl":"10.1134/S2070050424700107","url":null,"abstract":"<p>An essay on the scientific activities of the Russian organic chemist and chemical engineer Sergei Alekseevich Fokin (1865–1917) is presented. The name of the scientist is not widely known although he has made the main contribution to the development of oleochemistry and creation of the industrial process of fat hydrogenation in Russia, and his merits have been appreciated by domestic and foreign researchers.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"16 2","pages":"196 - 215"},"PeriodicalIF":0.7,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141168007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. A. Selishcheva, A. A. Sumina, O. A. Bulavchenko, V. A. Yakovlev
{"title":"High-Loaded Copper-Containing Catalysts for Furfural Hydroconversion","authors":"S. A. Selishcheva, A. A. Sumina, O. A. Bulavchenko, V. A. Yakovlev","doi":"10.1134/S2070050424700028","DOIUrl":"10.1134/S2070050424700028","url":null,"abstract":"<p>In this paper, high-loaded copper-containing catalysts synthesized by the different methods (sol–gel, fusion, coprecipitation) have been studied in furfural hydroconversion in a batch reactor at a hydrogen pressure of 5.0 MPa and a temperature of 100°C. The reduction temperatures and phase composition of the catalysts have been determined by physicochemical methods. It has been shown that the highest activity in the studied process is exhibited by a coprecipitated copper–alumina catalyst, which provides the production of furfuryl alcohol with a selectivity of 100% at 100–130°C; in addition, in the presence of this catalyst, 2-methylfuran can be synthesized with a yield of 65% at 200°C. The phase composition of the catalyst reduced at a selected temperature and the catalyst after reaction has been determined.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"16 2","pages":"123 - 132"},"PeriodicalIF":0.7,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141168010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Formation of Epoxycyclooctane during the Co-Oxidation of Cyclooctene and Alkylbenzenes","authors":"N. I. Kuznetsova, V. N. Zudin","doi":"10.1134/S2070050424700041","DOIUrl":"10.1134/S2070050424700041","url":null,"abstract":"<p>Cyclooctene and alkylbenzenes are subjected to co-oxidation in oxygen and a system of two catalysts. Radical catalyst Fe(acac)<sub>3</sub>/NHPI mediates the formation of alkylbenzene hydroperoxides, which are consumed in situ during the MoO<sub>3</sub>/SiO<sub>2</sub>-catalyzed epoxidation of cyclooctene. The chain oxidation rate is limited in cyclooctene and MoO<sub>3</sub>/SiO<sub>2</sub>, but radical catalyst Fe(acac)<sub>3</sub>/NHPI retains fairly high activity in the oxidation of alkylbenzene in hydroperoxide. It is found that isopropylbenzene is a better co-reducing agent than ethylbenzene because it ensures more vigorous and selective formation of epoxycyclooctane. At optimized amounts of components and a temperature of 80°C, selectivity toward epoxycyclooctane reaches 92 and 96% in ethylbenzene or isopropylbenzene, respectively, with more than 70% conversion of cyclooctene.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"16 2","pages":"141 - 151"},"PeriodicalIF":0.7,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141168074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Use of Microalgae Biomass to Synthesize Marketable Products: 3. Production of Motor Fuels from Microalgae Biomass Using Catalytic Approaches","authors":"K. N. Sorokina, Yu. V. Samoylova, V. N. Parmon","doi":"10.1134/S2070050424010082","DOIUrl":"10.1134/S2070050424010082","url":null,"abstract":"<p>The review addresses the main approaches used in the thermochemical and catalytic conversion of microalgae biomass (hydrothermal liquefaction, gasification, transesterification, pyrolysis) to produce biofuels. The key conditions that determine the reaction product yield using bio-oil production catalysts and approaches to bio-oil refining are discussed. It is shown that the use of bifunctional acid–base catalysts is most relevant for transesterification processes. The gasification and pyrolysis processes are used less frequently, because the former is accompanied by the formation of CO<sub>2</sub>, and the latter is characterized by the formation of a large amount of oxidized compounds that deteriorate the quality of bio-oil.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"16 1","pages":"77 - 88"},"PeriodicalIF":0.7,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140939637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}