碱催化聚碳酸酯塑料糖酵解的主要规律研究

IF 0.7 Q4 ENGINEERING, CHEMICAL
T. A. Kurneshova, V. N. Sapunov, M. P. Sergeenkova, G. V. Dzhabarov, E. V. Varlamova, M. S. Voronov, R. A. Kozlovskii, E. P. Antoshkina
{"title":"碱催化聚碳酸酯塑料糖酵解的主要规律研究","authors":"T. A. Kurneshova,&nbsp;V. N. Sapunov,&nbsp;M. P. Sergeenkova,&nbsp;G. V. Dzhabarov,&nbsp;E. V. Varlamova,&nbsp;M. S. Voronov,&nbsp;R. A. Kozlovskii,&nbsp;E. P. Antoshkina","doi":"10.1134/S2070050424700405","DOIUrl":null,"url":null,"abstract":"<p>This study is focused on the effect of various base catalysts on the glycolysis of plastics based on bisphenol A (BPA) polycarbonate (PC). It has been found that the chemical degradation of PC under the action of ethylene glycol (EG) leads to the formation of the following high-added value products: BPA (PC monomer) and BPA–ethylene carbonate (EC)/(EG) co-ethers (monohydroxyethyl ether of BPA (MHE-BPA), bishydroxyethyl ether of BPA (BHE-BPA)). A quantitative assessment of the reaction product yields has been conducted. It has been found that, at a 100% PC conversion, the product yields are the following (%): BPA, 33; MHE-BPA, 50; and BHE-BPA, 17. In addition, the efficiencies of using various alkaline agents as a catalyst depending on the type of metal have been compared in this study.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"17 1","pages":"56 - 65"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Studying the Main Laws Governing the Base-Catalyzed Glycolysis of Polycarbonate Plastics\",\"authors\":\"T. A. Kurneshova,&nbsp;V. N. Sapunov,&nbsp;M. P. Sergeenkova,&nbsp;G. V. Dzhabarov,&nbsp;E. V. Varlamova,&nbsp;M. S. Voronov,&nbsp;R. A. Kozlovskii,&nbsp;E. P. Antoshkina\",\"doi\":\"10.1134/S2070050424700405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study is focused on the effect of various base catalysts on the glycolysis of plastics based on bisphenol A (BPA) polycarbonate (PC). It has been found that the chemical degradation of PC under the action of ethylene glycol (EG) leads to the formation of the following high-added value products: BPA (PC monomer) and BPA–ethylene carbonate (EC)/(EG) co-ethers (monohydroxyethyl ether of BPA (MHE-BPA), bishydroxyethyl ether of BPA (BHE-BPA)). A quantitative assessment of the reaction product yields has been conducted. It has been found that, at a 100% PC conversion, the product yields are the following (%): BPA, 33; MHE-BPA, 50; and BHE-BPA, 17. In addition, the efficiencies of using various alkaline agents as a catalyst depending on the type of metal have been compared in this study.</p>\",\"PeriodicalId\":507,\"journal\":{\"name\":\"Catalysis in Industry\",\"volume\":\"17 1\",\"pages\":\"56 - 65\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis in Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2070050424700405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis in Industry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2070050424700405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究了不同碱催化剂对双酚A (BPA)聚碳酸酯(PC)基塑料糖酵解的影响。研究发现,PC在乙二醇(EG)作用下的化学降解可生成以下高附加值产品:双酚a (PC单体)和双酚a -碳酸乙烯(EC)/(EG)共醚(双酚a单羟乙基醚(MHE-BPA)、双酚a双羟乙基醚(BHE-BPA))。对反应产物的产率进行了定量评价。研究发现,在100%的PC转化率下,产物收率如下(%):BPA, 33;MHE-BPA 50;BHE-BPA, 17。此外,本研究还比较了不同金属类型的碱性催化剂的催化效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Studying the Main Laws Governing the Base-Catalyzed Glycolysis of Polycarbonate Plastics

This study is focused on the effect of various base catalysts on the glycolysis of plastics based on bisphenol A (BPA) polycarbonate (PC). It has been found that the chemical degradation of PC under the action of ethylene glycol (EG) leads to the formation of the following high-added value products: BPA (PC monomer) and BPA–ethylene carbonate (EC)/(EG) co-ethers (monohydroxyethyl ether of BPA (MHE-BPA), bishydroxyethyl ether of BPA (BHE-BPA)). A quantitative assessment of the reaction product yields has been conducted. It has been found that, at a 100% PC conversion, the product yields are the following (%): BPA, 33; MHE-BPA, 50; and BHE-BPA, 17. In addition, the efficiencies of using various alkaline agents as a catalyst depending on the type of metal have been compared in this study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis in Industry
Catalysis in Industry ENGINEERING, CHEMICAL-
CiteScore
1.30
自引率
14.30%
发文量
21
期刊介绍: The journal covers the following topical areas: Analysis of specific industrial catalytic processes: Production and use of catalysts in branches of industry: chemical, petrochemical, oil-refining, pharmaceutical, organic synthesis, fuel-energetic industries, environment protection, biocatalysis; technology of industrial catalytic processes (generalization of practical experience, improvements, and modernization); technology of catalysts production, raw materials and equipment; control of catalysts quality; starting, reduction, passivation, discharge, storage of catalysts; catalytic reactors.Theoretical foundations of industrial catalysis and technologies: Research, studies, and concepts : search for and development of new catalysts and new types of supports, formation of active components, and mechanochemistry in catalysis; comprehensive studies of work-out catalysts and analysis of deactivation mechanisms; studies of the catalytic process at different scale levels (laboratory, pilot plant, industrial); kinetics of industrial and newly developed catalytic processes and development of kinetic models; nonlinear dynamics and nonlinear phenomena in catalysis: multiplicity of stationary states, stepwise changes in regimes, etc. Advances in catalysis: Catalysis and gas chemistry; catalysis and new energy technologies; biocatalysis; nanocatalysis; catalysis and new construction materials.History of the development of industrial catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信