Annual Review of Biophysics最新文献

筛选
英文 中文
Mechanisms of Protein Quality Control in the Endoplasmic Reticulum by a Coordinated Hsp40-Hsp70-Hsp90 System. Hsp40-Hsp70-Hsp90协同系统在内质网中蛋白质质量控制的机制
IF 12.4 1区 生物学
Annual Review of Biophysics Pub Date : 2023-05-09 DOI: 10.1146/annurev-biophys-111622-091309
Judy L M Kotler, Timothy O Street
{"title":"Mechanisms of Protein Quality Control in the Endoplasmic Reticulum by a Coordinated Hsp40-Hsp70-Hsp90 System.","authors":"Judy L M Kotler,&nbsp;Timothy O Street","doi":"10.1146/annurev-biophys-111622-091309","DOIUrl":"https://doi.org/10.1146/annurev-biophys-111622-091309","url":null,"abstract":"<p><p>The Hsp40, Hsp70, and Hsp90 chaperone families are ancient, highly conserved, and critical to cellular protein homeostasis. Hsp40 chaperones can transfer their protein clients to Hsp70, and Hsp70 can transfer clients to Hsp90, but the functional benefits of these transfers are unclear. Recent structural and mechanistic work has opened up the possibility of uncovering how Hsp40, Hsp70, and Hsp90 work together as unified system. In this review, we compile mechanistic data on the ER J-domain protein 3 (ERdj3) (an Hsp40), BiP (an Hsp70), and Grp94 (an Hsp90) chaperones within the endoplasmic reticulum; what is known about how these chaperones work together; and gaps in this understanding. Using calculations, we examine how client transfer could impact the solubilization of aggregates, the folding of soluble proteins, and the triage decisions by which proteins are targeted for degradation. The proposed roles of client transfer among Hsp40-Hsp70-Hsp90 chaperones are new hypotheses, and we discuss potential experimental tests of these ideas.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":null,"pages":null},"PeriodicalIF":12.4,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9466565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Emerging Time-Resolved X-Ray Diffraction Approaches for Protein Dynamics. 蛋白质动力学的新兴时间分辨X射线衍射方法。
IF 12.4 1区 生物学
Annual Review of Biophysics Pub Date : 2023-05-09 DOI: 10.1146/annurev-biophys-111622-091155
Doeke R Hekstra
{"title":"Emerging Time-Resolved X-Ray Diffraction Approaches for Protein Dynamics.","authors":"Doeke R Hekstra","doi":"10.1146/annurev-biophys-111622-091155","DOIUrl":"10.1146/annurev-biophys-111622-091155","url":null,"abstract":"<p><p>Proteins guide the flows of information, energy, and matter that make life possible by accelerating transport and chemical reactions, by allosterically modulating these reactions, and by forming dynamic supramolecular assemblies. In these roles, conformational change underlies functional transitions. Time-resolved X-ray diffraction methods characterize these transitions either by directly triggering sequences of functionally important motions or, more broadly, by capturing the motions of which proteins are capable. To date, most successful have been experiments in which conformational change is triggered in light-dependent proteins. In this review, I emphasize emerging techniques that probe the dynamic basis of function in proteins lacking natively light-dependent transitions and speculate about extensions and further possibilities. In addition, I review how the weaker and more distributed signals in these data push the limits of the capabilities of analytical methods. Taken together, these new methods are beginning to establish a powerful paradigm for the study of the physics of protein function.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":null,"pages":null},"PeriodicalIF":12.4,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687665/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9642991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Simulation of Complex Biomolecular Systems: The Ribosome Challenge. 复杂生物分子系统的模拟:核糖体挑战。
IF 12.4 1区 生物学
Annual Review of Biophysics Pub Date : 2023-05-09 DOI: 10.1146/annurev-biophys-111622-091147
Lars V Bock, Sara Gabrielli, Michal H Kolář, Helmut Grubmüller
{"title":"Simulation of Complex Biomolecular Systems: The Ribosome Challenge.","authors":"Lars V Bock,&nbsp;Sara Gabrielli,&nbsp;Michal H Kolář,&nbsp;Helmut Grubmüller","doi":"10.1146/annurev-biophys-111622-091147","DOIUrl":"https://doi.org/10.1146/annurev-biophys-111622-091147","url":null,"abstract":"<p><p>Large biomolecular systems are at the heart of many essential cellular processes. The dynamics and energetics of an increasing number of these systems are being studied by computer simulations. Pushing the limits of length- and timescales that can be accessed by current hard- and software has expanded the ability to describe biomolecules at different levels of detail. We focus in this review on the ribosome, which exemplifies the close interplay between experiment and various simulation approaches, as a particularly challenging and prototypic nanomachine that is pivotal to cellular biology due to its central role in translation. We sketch widely used simulation methods and demonstrate how the combination of simulations and experiments advances our understanding of the function of the translation apparatus based on fundamental physics.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":null,"pages":null},"PeriodicalIF":12.4,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9446283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
HX and Me: Understanding Allostery, Folding, and Protein Machines. HX和我:理解变构、折叠和蛋白质机器。
IF 12.4 1区 生物学
Annual Review of Biophysics Pub Date : 2023-05-09 DOI: 10.1146/annurev-biophys-062122-093517
S Walter Englander
{"title":"HX and Me: Understanding Allostery, Folding, and Protein Machines.","authors":"S Walter Englander","doi":"10.1146/annurev-biophys-062122-093517","DOIUrl":"https://doi.org/10.1146/annurev-biophys-062122-093517","url":null,"abstract":"<p><p>My accidental encounter with protein hydrogen exchange (HX) at its very beginning and its continued development through my scientific career have led us to a series of advances in HX measurement, interpretation, and cutting edge biophysical applications. After some thoughts about how life brought me there, I take the opportunity to reflect on our early studies of allosteric structure and energy change in hemoglobin, the still-current protein folding problem, and our most recent forward-looking studies on protein machines.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":null,"pages":null},"PeriodicalIF":12.4,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9499376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Protein Diffusion Along Protein and DNA Lattices: Role of Electrostatics and Disordered Regions. 蛋白质沿蛋白质和DNA晶格扩散:静电和无序区域的作用。
IF 12.4 1区 生物学
Annual Review of Biophysics Pub Date : 2023-05-09 DOI: 10.1146/annurev-biophys-111622-091220
Lavi S Bigman, Yaakov Levy
{"title":"Protein Diffusion Along Protein and DNA Lattices: Role of Electrostatics and Disordered Regions.","authors":"Lavi S Bigman,&nbsp;Yaakov Levy","doi":"10.1146/annurev-biophys-111622-091220","DOIUrl":"https://doi.org/10.1146/annurev-biophys-111622-091220","url":null,"abstract":"<p><p>Diffusion is a pervasive process present in a broad spectrum of cellular reactions. Its mathematical description has existed for nearly two centuries and permits the construction of simple rules for evaluating the characteristic timescales of diffusive processes and some of their determinants. Although the term diffusion originally referred to random motions in three-dimensional (3D) media, several biological diffusion processes in lower dimensions have been reported. One-dimensional (1D) diffusions have been reported, for example, for translocations of various proteins along DNA or protein (e.g., microtubule) lattices and translation of helical peptides along the coiled-coil interface. Two-dimensional (2D) diffusion has been shown for dynamics of proteins along membranes. The microscopic mechanisms of these 1-3D diffusions may vary significantly depending on the nature of the diffusing molecules, the substrate, and the interactions between them. In this review, we highlight some key examples of 1-3D biomolecular diffusion processes and illustrate the roles that electrostatic interactions and intrinsic disorder may play in modulating these processes.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":null,"pages":null},"PeriodicalIF":12.4,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9499388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Prospects and Limitations of High-Resolution Single-Particle Cryo-Electron Microscopy. 高分辨率单粒子冷冻电子显微镜的前景与局限性。
IF 12.4 1区 生物学
Annual Review of Biophysics Pub Date : 2023-05-09 DOI: 10.1146/annurev-biophys-111622-091300
Ashwin Chari, Holger Stark
{"title":"Prospects and Limitations of High-Resolution Single-Particle Cryo-Electron Microscopy.","authors":"Ashwin Chari,&nbsp;Holger Stark","doi":"10.1146/annurev-biophys-111622-091300","DOIUrl":"https://doi.org/10.1146/annurev-biophys-111622-091300","url":null,"abstract":"<p><p>Single particle cryo-electron microscopy (cryo-EM) has matured into a robust method for the determination of biological macromolecule structures in the past decade, complementing X-ray crystallography and nuclear magnetic resonance. Constant methodological improvements in both cryo-EM hardware and image processing software continue to contribute to an exponential growth in the number of structures solved annually. In this review, we provide a historical view of the many steps that were required to make cryo-EM a successful method for the determination of high-resolution protein complex structures. We further discuss aspects of cryo-EM methodology that are the greatest pitfalls challenging successful structure determination to date. Lastly, we highlight and propose potential future developments that would improve the method even further in the near future.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":null,"pages":null},"PeriodicalIF":12.4,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9501371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Decoding and Recoding of mRNA Sequences by the Ribosome. 核糖体对mRNA序列的解码和再编码。
IF 12.4 1区 生物学
Annual Review of Biophysics Pub Date : 2023-05-09 DOI: 10.1146/annurev-biophys-101922-072452
Marina V Rodnina
{"title":"Decoding and Recoding of mRNA Sequences by the Ribosome.","authors":"Marina V Rodnina","doi":"10.1146/annurev-biophys-101922-072452","DOIUrl":"https://doi.org/10.1146/annurev-biophys-101922-072452","url":null,"abstract":"<p><p>Faithful translation of messenger RNA (mRNA) into protein is essential to maintain protein homeostasis in the cell. Spontaneous translation errors are very rare due to stringent selection of cognate aminoacyl transfer RNAs (tRNAs) and the tight control of the mRNA reading frame by the ribosome. Recoding events, such as stop codon readthrough, frameshifting, and translational bypassing, reprogram the ribosome to make intentional mistakes and produce alternative proteins from the same mRNA. The hallmark of recoding is the change of ribosome dynamics. The signals for recoding are built into the mRNA, but their reading depends on the genetic makeup of the cell, resulting in cell-specific changes in expression programs. In this review, I discuss the mechanisms of canonical decoding and tRNA-mRNA translocation; describe alternative pathways leading to recoding; and identify the links among mRNA signals, ribosome dynamics, and recoding.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":null,"pages":null},"PeriodicalIF":12.4,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9501373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
On the Rational Design of Cooperative Receptors. 论合作受体的合理设计。
IF 12.4 1区 生物学
Annual Review of Biophysics Pub Date : 2023-05-09 DOI: 10.1146/annurev-biophys-091222-082247
Gabriel Ortega, Alejandro Chamorro-Garcia, Francesco Ricci, Kevin W Plaxco
{"title":"On the Rational Design of Cooperative Receptors.","authors":"Gabriel Ortega,&nbsp;Alejandro Chamorro-Garcia,&nbsp;Francesco Ricci,&nbsp;Kevin W Plaxco","doi":"10.1146/annurev-biophys-091222-082247","DOIUrl":"https://doi.org/10.1146/annurev-biophys-091222-082247","url":null,"abstract":"<p><p>Cooperativity (homotropic allostery) is the primary mechanism by which evolution steepens the binding curves of biomolecular receptors to produce more responsive input-output behavior in biomolecular systems. Motivated by the ubiquity with which nature employs this effect, over the past 15 years we, together with other groups, have engineered this mechanism into several otherwise noncooperative receptors. These efforts largely aimed to improve the utility of such receptors in artificial biotechnologies, such as synthetic biology and biosensors, but they have also provided the first quantitative, experimental tests of longstanding ideas about the mechanisms underlying cooperativity. In this article, we review the literature on the design of this effect, paying particular attention to the design strategies involved, the extent to which each can be rationally applied to (and optimized for) new receptors, and what each teaches us about the origins and optimization of this important phenomenon.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":null,"pages":null},"PeriodicalIF":12.4,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9871542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Free Energy Methods for the Description of Molecular Processes. 描述分子过程的自由能方法。
IF 12.4 1区 生物学
Annual Review of Biophysics Pub Date : 2023-05-09 DOI: 10.1146/annurev-biophys-062722-093258
Christophe Chipot
{"title":"Free Energy Methods for the Description of Molecular Processes.","authors":"Christophe Chipot","doi":"10.1146/annurev-biophys-062722-093258","DOIUrl":"https://doi.org/10.1146/annurev-biophys-062722-093258","url":null,"abstract":"<p><p>Efforts to combine theory and experiment to advance our knowledge of molecular processes relevant to biophysics have been considerably enhanced by the contribution of statistical-mechanics simulations. Key to the understanding of such molecular processes is the underlying free-energy change. Being able to accurately predict this change from first principles represents an appealing prospect. Over the past decades, the synergy between steadily growing computational resources and unrelenting methodological developments has brought free-energy calculations into the arsenal of tools commonly utilized to tackle important questions that experiment alone has left unresolved. The continued emergence of new options to determine free energies has also bred confusion amid the community of users, who may find it difficult to choose the best-suited algorithm to address the problem at hand. In an attempt to clarify the current landscape, this review recounts how the field has been shaped and how the broad gamut of methods available today is rooted in a few foundational principles laid down many years ago.Three examples of molecular processes central to biophysics illustrate where free-energy calculations stand and what are the conceptual and practical obstacles that we must overcome to increase their predictive power.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":null,"pages":null},"PeriodicalIF":12.4,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9444040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Graphene and Two-Dimensional Materials for Biomolecule Sensing. 用于生物分子传感的石墨烯和二维材料。
IF 12.4 1区 生物学
Annual Review of Biophysics Pub Date : 2023-05-09 DOI: 10.1146/annurev-biophys-111622-091121
Deependra Kumar Ban, Prabhakar R Bandaru
{"title":"Graphene and Two-Dimensional Materials for Biomolecule Sensing.","authors":"Deependra Kumar Ban,&nbsp;Prabhakar R Bandaru","doi":"10.1146/annurev-biophys-111622-091121","DOIUrl":"https://doi.org/10.1146/annurev-biophys-111622-091121","url":null,"abstract":"<p><p>An ideal biosensor material at room temperature, with an extremely large surface area per unit mass combined with the possibility of harnessing quantum mechanical attributes, would be comprised of graphene and other two-dimensional (2D) materials. The sensing of a variety of sizes and types of biomolecules involves modulation of the electrical charge density of (current through) the 2D material and manifests through specific components of the capacitance (resistance). While sensitive detection at the single-molecule level, i.e., at zeptomolar concentrations, may be achieved, specificity in a complex mixture is more demanding. Attention should be paid to the influence of inevitably present defects in the 2D materials on the sensing, as well as calibration of obtained results with acceptable standards. The consequent establishment of a roadmap for the widespread deployment of 2D material-based biosensors in point-of-care platforms has the potential to revolutionize health care.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":null,"pages":null},"PeriodicalIF":12.4,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9444170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信