从核小体到分区:染色质组织的物理化学相互作用。

IF 10.4 1区 生物学 Q1 BIOPHYSICS
Annual Review of Biophysics Pub Date : 2024-07-01 Epub Date: 2024-06-28 DOI:10.1146/annurev-biophys-030822-032650
Shuming Liu, Advait Athreya, Zhuohan Lao, Bin Zhang
{"title":"从核小体到分区:染色质组织的物理化学相互作用。","authors":"Shuming Liu, Advait Athreya, Zhuohan Lao, Bin Zhang","doi":"10.1146/annurev-biophys-030822-032650","DOIUrl":null,"url":null,"abstract":"<p><p>Chromatin organization plays a critical role in cellular function by regulating access to genetic information. However, understanding chromatin folding is challenging due to its complex, multiscale nature. Significant progress has been made in studying in vitro systems, uncovering the structure of individual nucleosomes and their arrays, and elucidating the role of physicochemical forces in stabilizing these structures. Additionally, remarkable advancements have been achieved in characterizing chromatin organization in vivo, particularly at the whole-chromosome level, revealing important features such as chromatin loops, topologically associating domains, and nuclear compartments. However, bridging the gap between in vitro and in vivo studies remains challenging. The resemblance between in vitro and in vivo chromatin conformations and the relevance of internucleosomal interactions for chromatin folding in vivo are subjects of debate. This article reviews experimental and computational studies conducted at various length scales, highlighting the significance of intrinsic interactions between nucleosomes and their roles in chromatin folding in vivo.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":" ","pages":"221-245"},"PeriodicalIF":10.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369498/pdf/","citationCount":"0","resultStr":"{\"title\":\"From Nucleosomes to Compartments: Physicochemical Interactions Underlying Chromatin Organization.\",\"authors\":\"Shuming Liu, Advait Athreya, Zhuohan Lao, Bin Zhang\",\"doi\":\"10.1146/annurev-biophys-030822-032650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chromatin organization plays a critical role in cellular function by regulating access to genetic information. However, understanding chromatin folding is challenging due to its complex, multiscale nature. Significant progress has been made in studying in vitro systems, uncovering the structure of individual nucleosomes and their arrays, and elucidating the role of physicochemical forces in stabilizing these structures. Additionally, remarkable advancements have been achieved in characterizing chromatin organization in vivo, particularly at the whole-chromosome level, revealing important features such as chromatin loops, topologically associating domains, and nuclear compartments. However, bridging the gap between in vitro and in vivo studies remains challenging. The resemblance between in vitro and in vivo chromatin conformations and the relevance of internucleosomal interactions for chromatin folding in vivo are subjects of debate. This article reviews experimental and computational studies conducted at various length scales, highlighting the significance of intrinsic interactions between nucleosomes and their roles in chromatin folding in vivo.</p>\",\"PeriodicalId\":50756,\"journal\":{\"name\":\"Annual Review of Biophysics\",\"volume\":\" \",\"pages\":\"221-245\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369498/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-biophys-030822-032650\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-biophys-030822-032650","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

染色质组织通过调节遗传信息的获取,在细胞功能中发挥着至关重要的作用。然而,由于染色质折叠的复杂性和多尺度性,了解染色质折叠具有挑战性。在研究体外系统、揭示单个核小体及其阵列的结构以及阐明物理化学力在稳定这些结构中的作用方面,已经取得了重大进展。此外,体内染色质组织的表征也取得了显著进展,尤其是在全染色体水平,揭示了染色质环、拓扑关联域和核区等重要特征。然而,弥合体外和体内研究之间的差距仍然具有挑战性。体外和体内染色质构象的相似性以及核小体间相互作用与体内染色质折叠的相关性是争论的主题。本文回顾了在不同长度尺度上进行的实验和计算研究,强调了核小体之间内在相互作用的重要性及其在体内染色质折叠中的作用。生物物理学年刊》(Annual Review of Biophysics)第53卷的最终在线出版日期预计为2024年5月。修订后的预计日期请参见 http://www.annualreviews.org/page/journal/pubdates。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From Nucleosomes to Compartments: Physicochemical Interactions Underlying Chromatin Organization.

Chromatin organization plays a critical role in cellular function by regulating access to genetic information. However, understanding chromatin folding is challenging due to its complex, multiscale nature. Significant progress has been made in studying in vitro systems, uncovering the structure of individual nucleosomes and their arrays, and elucidating the role of physicochemical forces in stabilizing these structures. Additionally, remarkable advancements have been achieved in characterizing chromatin organization in vivo, particularly at the whole-chromosome level, revealing important features such as chromatin loops, topologically associating domains, and nuclear compartments. However, bridging the gap between in vitro and in vivo studies remains challenging. The resemblance between in vitro and in vivo chromatin conformations and the relevance of internucleosomal interactions for chromatin folding in vivo are subjects of debate. This article reviews experimental and computational studies conducted at various length scales, highlighting the significance of intrinsic interactions between nucleosomes and their roles in chromatin folding in vivo.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Biophysics
Annual Review of Biophysics 生物-生物物理
CiteScore
21.00
自引率
0.00%
发文量
25
期刊介绍: The Annual Review of Biophysics, in publication since 1972, covers significant developments in the field of biophysics, including macromolecular structure, function and dynamics, theoretical and computational biophysics, molecular biophysics of the cell, physical systems biology, membrane biophysics, biotechnology, nanotechnology, and emerging techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信