{"title":"Linear Flow Analysis Inspired by Mathematical Methods from Quantum Mechanics","authors":"L. Magri, P. Schmid, J. Moeck","doi":"10.1146/annurev-fluid-031022-044209","DOIUrl":"https://doi.org/10.1146/annurev-fluid-031022-044209","url":null,"abstract":"Since its birth in the 1920s, quantum mechanics has motivated and advanced the analysis of linear operators. In this effort, it significantly contributed to the development of sophisticated mathematical tools in spectral theory. Many of these tools have also found their way into classical fluid mechanics and enabled elegant and effective solution strategies as well as physical insights into complex fluid behaviors. This review provides supportive evidence for synergistically adopting mathematical techniques beyond the classical repertoire, both for fluid research and for the training of future fluid dynamicists. Deeper understanding, compelling solution methods, and alternative interpretations of practical problems can be gained by an awareness of mathematical techniques and approaches from quantum mechanics. Techniques such as spectral analysis, series expansions, considerations on symmetries, and integral transforms are discussed, and applications from acoustics and incompressible flows are presented with a quantum mechanical perspective. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 55 is January 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":27.7,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46373933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamics of Three-Dimensional Shock-Wave/Boundary-Layer Interactions","authors":"D. Gaitonde, M. Adler","doi":"10.1146/annurev-fluid-120720-022542","DOIUrl":"https://doi.org/10.1146/annurev-fluid-120720-022542","url":null,"abstract":"Advances in measuring and understanding separated, nominally two-dimensional (2D) shock-wave/turbulent-boundary-layer interactions (STBLI) have triggered recent campaigns focused on three-dimensional (3D) STBLI, which display far greater configuration diversity. Nonetheless, unifying properties emerge for semi-infinite interactions, taking the form of conical asymptotic behavior where shock-generator specifics become insignificant. The contrast between 2D and 3D separation is substantial; the skewed vortical structure of 3D STBLI reflects the essentially 2D influence of the boundary layer on the 3D character of the swept shock. As with 2D STBLI, conical interactions engender prominent spectral content below that of the turbulent boundary layer. However, the uniform separation length scale, which is crucial to normalizing the lowest-frequency dynamics in 2D STBLI, is absent. Comparatively, the spectra of 3D STBLI are more representative of the mid-frequency, convective, shear-layer dynamics in 2D, while phenomena associated with 2D separation-shock breathing are muted. Asymptotic behavior breaks down in many regions important to 3D-STBLI dynamics, occurring in a configuration-dependent manner. Aspects of inceptive regions near shock generators and symmetry planes are reviewed. Focused efforts toward 3D modal and nonmodal analyses, moving-shock/boundary-layer interactions, fluid/structure interactions, and flow control are suggested as directions for future work. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 55 is January 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":27.7,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42317903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"3D Lagrangian Particle Tracking in Fluid Mechanics","authors":"A. Schröder, D. Schanz","doi":"10.1146/annurev-fluid-031822-041721","DOIUrl":"https://doi.org/10.1146/annurev-fluid-031822-041721","url":null,"abstract":"In the past few decades various particle image–based volumetric flow measurement techniques have been developed that have demonstrated their potential in accessing unsteady flow properties quantitatively in various experimental applications in fluid mechanics. In this review, we focus on physical properties and circumstances of 3D particle–based measurements and what knowledge can be used for advancing reconstruction accuracy and spatial and temporal resolution, as well as completeness. The natural candidate for our focus is 3D Lagrangian particle tracking (LPT), which allows for position, velocity, and acceleration to be determined alongside a large number of individual particle tracks in the investigated volume. The advent of the dense 3D LPT technique Shake-The-Box in the past decade has opened further possibilities for characterizing unsteady flows by delivering input data for powerful data assimilation techniques that use Navier–Stokes constraints. As a result, high-resolution Lagrangian and Eulerian data can be obtained, including long particle trajectories embedded in time-resolved 3D velocity and pressure fields. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 55 is January 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":27.7,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42267417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Icebergs Melting","authors":"C. Cenedese, F. Straneo","doi":"10.1146/annurev-fluid-032522-100734","DOIUrl":"https://doi.org/10.1146/annurev-fluid-032522-100734","url":null,"abstract":"Iceberg calving accounts for half of the mass discharge from the Greenland and Antarctic ice sheets, which has increased dramatically over the last two decades. Through their displacement and progressive melt, icebergs can impact both the regional and large-scale ocean circulation and marine ecosystems by affecting its stratification and nutrient and carbon cycling. Freshwater input due to iceberg melt has the potential to impact regional sea ice distribution and the global overturning circulation. Notwithstanding their importance, our understanding of where and how icebergs melt is limited and their representation in ocean and climate models is oversimplistic, in part because they are informed by only a handful of observations. As a result, model-based predictions of iceberg melt rates, of the fate of the meltwater, and of its impact on the ocean are highly uncertain. New observational, modeling, and experimental studies are needed to improve our understanding of iceberg melting and hence, the forecasting power of climate models. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 55 is January 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":27.7,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48942596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaporation of Sessile Droplets","authors":"S. Wilson, Hannah-May D'Ambrosio","doi":"10.1146/annurev-fluid-031822-013213","DOIUrl":"https://doi.org/10.1146/annurev-fluid-031822-013213","url":null,"abstract":"The evaporation of a sessile droplet of liquid is a complex and multifaceted fundamental topic of enduring scientific interest that is key to numerous physical and biological processes. As a result, in recent decades a considerable multidisciplinary research effort has been directed toward many different aspects of the problem. This review focuses on some of the insights that can be obtained from relatively simple mathematical models and discusses some of the directions in which the field may move in the future. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 55 is January 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":27.7,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43156081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fluid Dynamics of Polar Vortices on Earth, Mars, and Titan","authors":"D. Waugh","doi":"10.1146/annurev-fluid-120720-032208","DOIUrl":"https://doi.org/10.1146/annurev-fluid-120720-032208","url":null,"abstract":"Polar vortices that share many similarities are found in Earth's stratosphere and the atmospheres of Mars and Saturn's moon Titan. These vortices all occur in the winter, and are characterized by high potential vorticity (PV) in polar regions, steep meridional PV gradients and peak zonal winds in middle latitudes, and a cold pole. There are, however, differences in the daily and subseasonal variability, zonal asymmetries, and PV structure among the vortices. These differences are related to differences in the disruption of polar vortices by Rossby waves, the poleward extent of the mean meridional circulation, and condensation of major gases. There are also differences in the transport of gases and particles among the vortices. The range of polar vortex characteristics is likely much larger for terrestrial exoplanets, which include planets with, for example, a wider range of obliquities. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 55 is January 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":27.7,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46160147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gas-Liquid Foam Dynamics: From Structural Elements to Continuum Descriptions","authors":"P. Stewart, S. Hilgenfeldt","doi":"10.1146/annurev-fluid-032822-125417","DOIUrl":"https://doi.org/10.1146/annurev-fluid-032822-125417","url":null,"abstract":"Gas-liquid foams are important in applications ranging from oil recovery and mineral flotation to food science and microfluidics. Beyond their practical use, they represent an intriguing prototype of a soft material with a complex, viscoelastic rheological response. Crucially, foams allow detailed access to fluid-dynamical processes on the mesoscale of bubbles underlying the large-scale material behavior. This review emphasizes the importance of the geometry and interaction of mesoscale structural elements for the description of the dynamics of entire foams. Using examples including bulk flow of foam under steady shear, interfacial instabilities, and foam fracture through bubble rupture, this article highlights the wide variety of available theoretical descriptions, ranging from network modeling approaches coupling structural element equations of motion to full continuum models with elastoviscoplastic constitutive relations. Foams offer the opportunity to develop rigorous links between such disparate descriptions, providing a blueprint for physical modeling of dynamical multiscale systems with complex structure. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 55 is January 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":27.7,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45629701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Fluid Mechanics of Deep-Sea Mining","authors":"T. Peacock, R. Ouillon","doi":"10.1146/annurev-fluid-031822-010257","DOIUrl":"https://doi.org/10.1146/annurev-fluid-031822-010257","url":null,"abstract":"Fluid mechanics lies at the heart of many of the physical processes associated with the nascent deep-sea mining industry. The evolution and fate of sediment plumes that would be produced by seabed mining activities, which are central to the assessment of the environmental impact, are entirely determined by transport processes. These processes, which include advection, turbulent mixing, buoyancy, differential particle settling, and flocculation, operate at a multitude of spatiotemporal scales. A combination of historical and recent efforts that combine theory, numerical modeling, laboratory experiments, and field trials has yielded significant progress, including assessing the role of environmental and operational parameters in setting the extent of sediment plumes, but more fundamental and applied fluid mechanics research is needed before models can accurately predict commercial-scale scenarios. Furthermore, fluid mechanics underpins the design and operation of proposed mining technologies, for which there are currently no established best practices. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 55 is January 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":27.7,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49660354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Motion in Stratified Fluids","authors":"R. More, A. Ardekani","doi":"10.1146/annurev-fluid-120720-011132","DOIUrl":"https://doi.org/10.1146/annurev-fluid-120720-011132","url":null,"abstract":"Density stratification due to temperature or salinity variations greatly influences the flow around and the sedimentation of objects such as particles, drops, bubbles, and small organisms in the atmosphere, oceans, and lakes. Density stratification hampers the vertical flow and substantially affects the sedimentation of an isolated object, the hydrodynamic interactions between a pair of objects, and the collective behavior of suspensions in various ways, depending on the relative magnitude of stratification, inertia (advection), and viscous (diffusion) effects. This review discusses these effects and their hydrodynamic mechanisms in some commonly observed fluid–particle transport phenomena in oceans and the atmosphere. Physical understanding of these mechanisms can help us better model these phenomena and, hence, predict their geophysical, engineering, ecological, and environmental implications. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 55 is January 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":27.7,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46432933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Flow Physics of Face Masks","authors":"R. Mittal, K. Breuer, J. Seo","doi":"10.1146/annurev-fluid-120720-035029","DOIUrl":"https://doi.org/10.1146/annurev-fluid-120720-035029","url":null,"abstract":"Although face masks have been used for over a century to provide protection against airborne pathogens and pollutants, close scrutiny of their effectiveness has peaked in the past two years in response to the COVID-19 pandemic. The simplicity of face masks belies the complexity of the physical phenomena that determine their effectiveness as a defense against airborne infections. This complexity is rooted in the fact that the effectiveness of face masks depends on the combined effects of respiratory aerodynamics, filtration flow physics, droplet dynamics and their interactions with porous materials, structural dynamics, physiology, and even human behavior. At its core, however, the face mask is a flow-handling device, and in the current review, we take a flow-physics-centric view of face masks and the key phenomena that underlie their function. We summarize the state-of-the-art in experimental measurements, as well as the growing body of computational studies that have contributed to our understanding of the factors that determine the effectiveness of face masks. The review also lays out some of the important open questions and technical challenges associated with the effectiveness of face masks. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 55 is January 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":27.7,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44996260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}