Kenneth W Carlson, Harry R Smolker, Louisa L Smith, Hannah R Synder, Benjamin L Hankin, Marie T Banich
{"title":"Individual differences in intolerance of uncertainty is primarily linked to the structure of inferior frontal regions.","authors":"Kenneth W Carlson, Harry R Smolker, Louisa L Smith, Hannah R Synder, Benjamin L Hankin, Marie T Banich","doi":"10.3758/s13415-024-01262-0","DOIUrl":"https://doi.org/10.3758/s13415-024-01262-0","url":null,"abstract":"<p><p>Increased intolerance of uncertainty (IU), or distress felt when encountering situations with unknown outcomes, occurs transdiagnostically across various forms of psychopathology and is targeted in therapeutic intervention. Increased intolerance of uncertainty shows overlap with symptoms of internalizing disorders, such as depression and anxiety, including negative affect and anxious apprehension (worry). While neuroanatomical correlates of IU have been reported, previous investigations have not disentangled the specific neural substrates of IU above and beyond any overlapping relationships with aspects of internalizing psychopathology. The current study did so in a sample of 42 adults and 79 adolescents, who completed questionnaires assessing IU and internalizing symptoms, and underwent structural MRI. When controlling for internalizing symptoms, across adults and adolescents, specific associations of IU were found with the structure of the inferior frontal cortex and orbitofrontal cortex, regions implicated in cognitive control and emotional valuation/regulation. In addition, in adolescents, associations were observed with rostral middle frontal cortex and portions of the cingulate cortex. No associations were observed with threat-related regions, such as the amygdala. Potential cognitive/emotional mechanisms that might explain the association between individual differences in intolerance of uncertainty and morphology of the inferior frontal cortex are discussed.</p>","PeriodicalId":50672,"journal":{"name":"Cognitive Affective & Behavioral Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Liu, Yuan Gao, Zhidong Ma, Qingge Zhang, Ruiqiang Sun, Ling Wang, Sishun Zhao, Changjiang Li, Bo Lian, Hongwei Sun, Lin Sun
{"title":"Low emotional contagious behavior induces PTSD susceptibility in observers and is related to the regulation of oxytocin receptor in mice.","authors":"Yang Liu, Yuan Gao, Zhidong Ma, Qingge Zhang, Ruiqiang Sun, Ling Wang, Sishun Zhao, Changjiang Li, Bo Lian, Hongwei Sun, Lin Sun","doi":"10.3758/s13415-024-01244-2","DOIUrl":"https://doi.org/10.3758/s13415-024-01244-2","url":null,"abstract":"<p><strong>Background: </strong>Post-traumatic stress disorder (PTSD) is a serious psychiatric disorder that occurs after an individual has witnessed or experienced a major traumatic event. Emotional contagion seems to play an important role in witnessing trauma, highlighting the importance of understanding the neurobiological consequences of psychological or emotional stress and its impact on the individual's mental health. Therefore, understanding the relationship between emotional contagion and PTSD susceptibility and the abnormal neurobiological and behavioral changes behind it could help find effective molecular treatment targets.</p><p><strong>Methods: </strong>The formalin pain test was used to distinguish the level of emotional contagion in observer mice, dividing them into quartiles according to their pain response. The upper and lower quartiles were the emotional contagion-prone (ECP) and -resistant (ECR) groups, respectively. The vicarious social defeat stress (VSDS) procedure was used to establish PTSD models in mice with various emotional contagion levels when witnessing stress. Open field, elevated plus maze, social interaction test, and forced swimming test were used to examine PTSD-like symptoms. Changes in the medial prefrontal cortex (mPFC) mRNA expression of brain-derived neurotrophic factor (BDNF) and oxytocin receptor (OTR) were detected by qPCR, and their protein levels were analyzed by Western blot and immunofluorescence staining.</p><p><strong>Results: </strong>The formalin pain test induced emotional contagion behaviors in mice between the ECP and ECR levels. The VSDS procedure resulted in PTSD symptoms in mice; mice in the lowest quartile were characterized by high levels of anxiety, depression, and social avoidance behaviors, such as decreased autonomous activity and residence time in the open field test or open arms position and increased immobility time and social avoidance behavior. These were accompanied by reduced OTR and BDNF protein expression levels and fluorescence intensity, as well as reduced OTR and BDNF mRNA levels in the mPFC.</p><p><strong>Conclusions: </strong>Emotional contagion can induce PTSD-like behavior in mice that witnessed stress. Low emotional contagion behavior increased PTSD susceptibility in the observer mice and might be related to the regulation of their oxytocin receptors.</p>","PeriodicalId":50672,"journal":{"name":"Cognitive Affective & Behavioral Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143025561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mei Li, DengFang Tang, Wenbin Pan, Yujie Zhang, Jiachen Lu, Hong Li
{"title":"The influence of social status and promise levels in trust games: An Event-Related Potential (ERP) study.","authors":"Mei Li, DengFang Tang, Wenbin Pan, Yujie Zhang, Jiachen Lu, Hong Li","doi":"10.3758/s13415-024-01259-9","DOIUrl":"https://doi.org/10.3758/s13415-024-01259-9","url":null,"abstract":"<p><p>Promises are widely used to increase trust in social status; yet how promise levels and social status influence trust behavior and its underlying neurophysiological mechanisms remain unclear. We used a modified trust game to investigate the effects of promise levels and social status on trust behavior. Participants, as investors paired with trustees of varying social status who were given the opportunity to promise to return different levels of money, were required to decide to whether trust the trustees. In Experiment 1, trustees promised to return high-, medium-, or low-level money to participants, and no return feedback was provided. In Experiment 2, trustees promised to return high- and low-level money to participants. Return feedback was provided and event-related potential (ERP) data were recorded. The behavioral results indicated that participants trusted high-status partners more than low-status partners, regardless of the promise level. The ERP results showed that with low-status partners, the N2 was more negative and the P3 was smaller under low-level promise conditions than under high-level promise conditions. However, with high-status partner, there were no differences in N2 and P3 between high- and low-level promise conditions. Our findings suggest that social status may affect the perception of potential risks across different promise levels in trust.</p>","PeriodicalId":50672,"journal":{"name":"Cognitive Affective & Behavioral Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143025565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Attentional Inhibition Ability Predicts Neural Representation During Challenging Auditory Streaming.","authors":"Joan Belo, Maureen Clerc, Daniele Schon","doi":"10.3758/s13415-024-01260-2","DOIUrl":"https://doi.org/10.3758/s13415-024-01260-2","url":null,"abstract":"<p><p>Focusing on a single source within a complex auditory scene is challenging. M/EEG-based auditory attention detection (AAD) allows to detect which stream an individual is attending to within a set of multiple concurrent streams. The high interindividual variability in the auditory attention detection performance often is attributed to physiological factors and signal-to-noise ratio of neural data. We hypothesize that executive functions-in particular sustained attention, working memory, and attentional inhibition-may partly explain the variability in auditory attention detection performance, because they support the cognitive processes required when listening to complex auditory scenes. We chose a particularly challenging auditory scene by presenting dichotically polyphonic classical piano excerpts that lasted 1 min each. Two different excerpts were presented simultaneously, one in each ear. Forty-one participants, with different degrees of musical expertise, listened to these complex auditory scenes focusing on one ear while we recorded the EEG. Participants also completed several tasks assessing executive functions. As expected, EEG-based auditory attention detection was greater for attended than unattended stimuli. Importantly, attentional inhibition ability did explain 6% of the reconstruction accuracy and 8% of the classification accuracy. No other executive function was a significant predictor of reconstruction or classification accuracies. No clear effect of musical expertise was found on reconstruction and classification performance. In conclusion, cognitive factors seem to impact the robustness of the neural auditory representation and hence the performance of EEG-based decoding approaches. Taking advantage of this relation could be useful to improve next-generation hearing aids.</p>","PeriodicalId":50672,"journal":{"name":"Cognitive Affective & Behavioral Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143014901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The role of spatial processing in verbal serial order working memory.","authors":"Yingxue Tian, Simon Fischer-Baum","doi":"10.3758/s13415-024-01240-6","DOIUrl":"https://doi.org/10.3758/s13415-024-01240-6","url":null,"abstract":"<p><p>In a sequence, at least two aspects of information-the identity of items and their serial order-are maintained and supported by distinct working memory (WM) capacities. Verbal serial order WM is modulated by spatial processing, reflected in the Spatial Position Association of Response Codes (SPoARC) effect-the left-beginning, right-end positional association between space and serial position of verbal WM memoranda. We investigated the individual differences in this modulation with both behavioral and neurobiological approaches. We administered a battery of seven behavioral tasks with 160 healthy adults and collected resting-state fMRI data from a subset of 25 participants. With a multilevel mixed-effects modeling approach, we found that the SPoARC effect's magnitude predicts individual differences in verbal serial order WM capacity and is related to spatial item WM capacity. With a graph-theory-based analytic approach, this interaction between verbal serial order WM and spatial WM was corroborated in that the level of interaction between corresponding cortical regions (indexed by modularity) was predictive of the magnitude of the SPoARC effect. Additionally, the modularity of cortical regions associated with verbal serial order WM and spatial attention predicted the SPoARC effect's magnitude, indicating the involvement of spatial attention in this modulation. Together, our findings highlight multiple sources of the interplay between verbal serial order WM and spatial processing.</p>","PeriodicalId":50672,"journal":{"name":"Cognitive Affective & Behavioral Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143015261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Introduction to the special issue on individual differences in memory modulation.","authors":"Stephanie L Leal, Jaclyn H Ford, Nancy A Dennis","doi":"10.3758/s13415-024-01255-z","DOIUrl":"https://doi.org/10.3758/s13415-024-01255-z","url":null,"abstract":"","PeriodicalId":50672,"journal":{"name":"Cognitive Affective & Behavioral Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142980528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stochastic decisions support optimal foraging of volatile environments, and are disrupted by anxiety.","authors":"Alex Lloyd, Ryan McKay, Nicholas Furl","doi":"10.3758/s13415-024-01256-y","DOIUrl":"https://doi.org/10.3758/s13415-024-01256-y","url":null,"abstract":"<p><p>Adolescence is a developmental period of relative volatility, where the individual experiences significant changes to their physical and social environment. The ability to adapt to the volatility of one's surroundings is an important cognitive ability, particularly while foraging, a near-ubiquitous behaviour across the animal kingdom. As adolescents experience more volatility in their surroundings, we predicted that this age group would be more adept than adults at using exploration to adjust to volatility. We employed a foraging task with a well-validated computational model to characterise the mechanisms of exploration in volatile environments, preregistering the hypothesis that adolescents (aged 16-17; N = 91) would exhibit more optimal adaptation of their learning rate to changes in environmental volatility compared with adults (aged 24+; N = 90). However, surprisingly, both adolescents and adults exhibited suboptimal adjustment of their learning rate to environmental volatility. In contrast to the learning rate, it was instead participants' stochasticity (i.e., decision variability) that better resembled the adjustment to volatility made by the optimal RL agent. Although heightened stochasticity in the volatile environment led participants to more often trial different responses that facilitated discovery of changes to the environment, we also found that anxiety impaired this adaptive ability. The finding of heightened stochasticity in volatile environments contradicts expectations that the learning rate is responsible for successful adaptation and motivates future work on the deleterious role that anxiety plays when adolescents manage periods of transition.</p>","PeriodicalId":50672,"journal":{"name":"Cognitive Affective & Behavioral Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142958478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Steven J Granger, Elizabeth A Olson, Sylvie J Weinstein, Isabelle R Vratimos, Brian Lynch, Boyu Ren, Isabelle M Rosso
{"title":"Aberrant neural event segmentation during a continuous social narrative in trauma-exposed older adolescents and young adults.","authors":"Steven J Granger, Elizabeth A Olson, Sylvie J Weinstein, Isabelle R Vratimos, Brian Lynch, Boyu Ren, Isabelle M Rosso","doi":"10.3758/s13415-024-01252-2","DOIUrl":"https://doi.org/10.3758/s13415-024-01252-2","url":null,"abstract":"<p><p>Post-traumatic stress and major depressive disorders are associated with \"overgeneral\" autobiographical memory, or impaired recall of specific life events. Interpersonal trauma exposure, a risk factor for both conditions, may influence how symptomatic trauma-exposed (TE) individuals segment everyday events. The ability to parse experience into units (event segmentation) supports memory. Neural state transitions occur within a cortical hierarchy and play a key role in event segmentation, with regions like the occipital cortex, angular gyrus, and striatum involved in parsing event structure. We examined whether interpersonal trauma exposure was associated with alterations in the cortical hierarchy and striatal activity at neural state transitions in symptomatic TE versus healthy control (HC) individuals. Fifty older adolescents and young adults (29 TE, 21 HC) viewed the film \"Partly Cloudy\" during functional magnetic resonance imaging. A greedy-state boundary search algorithm assessed the optimal number of events, quality, and segmentation agreement of neural state transitions in the occipital cortex and angular gyrus. Striatal (nucleus accumbens, caudate, and putamen) activity was assessed at occipital and angular gyrus-evoked state transitions. Compared to HCs, TE participants displayed less occipital and greater angular gyrus-evoked optimal number of neural state transitions. TE participants also displayed lower quality of neural state segmentation solutions in occipital and angular cortices compared to HCs. Additionally, TE participants had less putamen activity at angular gyrus-evoked state transitions than HCs. This investigation provides neurobiological insights into aberrant event segmentation in symptomatic TE individuals, shedding light on mechanisms influencing overgeneral memory in trauma-related disorders.</p>","PeriodicalId":50672,"journal":{"name":"Cognitive Affective & Behavioral Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142958455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Isu Cho, Krystal R Leger, Ioannis Valoumas, Ross W Mair, Joshua Oon Soo Goh, Angela Gutchess
{"title":"How age and culture impact the neural correlates of memory retrieval.","authors":"Isu Cho, Krystal R Leger, Ioannis Valoumas, Ross W Mair, Joshua Oon Soo Goh, Angela Gutchess","doi":"10.3758/s13415-024-01245-1","DOIUrl":"https://doi.org/10.3758/s13415-024-01245-1","url":null,"abstract":"<p><p>Culture can shape memory, but little research has investigated age effects. The present study examined the neural correlates of memory retrieval for old, new, and similar lures in younger and older Americans and Taiwanese. A total of 207 participants encoded pictures of objects and, during fMRI scanning, completed a surprise object recognition task testing discrimination of similar and new from old items. Results show that age and culture impact discrimination of old from new items. Taiwanese performed worse than Americans, with age effects more pronounced for Taiwanese. The cultural differences in the engagement of left inferior frontal gyrus (LIFG) in younger adults (i.e., greater activity for old [for Taiwanese] or new items [for Americans]) were eliminated with age. The results are interpreted as reflecting cultural differences in orientation to novelty versus familiarity for younger, but not older, adults, with the LIFG supporting interference resolution at retrieval. Support is not as strong for cultural differences in pattern separation processes. Although Americans had higher levels of memory discrimination than Taiwanese, neither cultural nor age differences were found in hippocampal activity, which is surprising given the region's role in pattern separation. The findings suggest ways in which cultural life experiences and concomitant information processing strategies can contribute to consistent effects of age across cultures or contribute to different trajectories with age in terms of memory.</p>","PeriodicalId":50672,"journal":{"name":"Cognitive Affective & Behavioral Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142958475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}