{"title":"Poisson brackets of partitions of unity on surfaces","authors":"Lev Buhovsky, Alexander Logunov, Shira Tanny","doi":"10.4171/cmh/487","DOIUrl":"https://doi.org/10.4171/cmh/487","url":null,"abstract":"Given an open cover of a closed symplectic manifold, consider all smooth partitions of unity consisting of functions supported in the covering sets. The Poisson bracket invariant of the cover measures how much the functions from such a partition of unity can become close to being Poisson commuting. We introduce a new approach to this invariant, which enables us to prove the lower bound conjectured by L. Polterovich, in dimension 2.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":"3 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2020-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138540702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Isometric immersions of RCD spaces","authors":"Shouhei Honda","doi":"10.4171/cmh/519","DOIUrl":"https://doi.org/10.4171/cmh/519","url":null,"abstract":"We prove that if an RCD space has a regular isometric immersion in a Euclidean space, then the immersion is a locally bi-Lipschitz embedding map. This result leads us to prove that if a compact non-collapsed RCD space has an isometric immersion in a Euclidean space via an eigenmap, then the eigenmap is a locally bi-Lipschitz embedding map to a sphere, which generalizes a fundamental theorem of Takahashi in submanifold theory to a non-smooth setting. Applications of these results include a topological sphere theorem and topological finiteness theorems, which are new even for closed Riemannian manifolds.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2020-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42422768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Smooth zero-entropy diffeomorphisms with ergodic derivative extension","authors":"Philipp Kunde","doi":"10.4171/cmh/478","DOIUrl":"https://doi.org/10.4171/cmh/478","url":null,"abstract":"On any smooth compact and connected manifold of dimension 2 admitting a smooth nontrivial circle action we construct C∞-diffeomorphisms of topological entropy zero whose differential is ergodic with respect to a smooth measure in the projectivization of the tangent bundle. The proof is based on a version of the “approximation by conjugation”-method.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":"95 1","pages":"1-25"},"PeriodicalIF":0.9,"publicationDate":"2020-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/cmh/478","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45394854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The collapsing geometry of almost Ricci-flat 4-manifolds","authors":"John Lott","doi":"10.4171/cmh/481","DOIUrl":"https://doi.org/10.4171/cmh/481","url":null,"abstract":"We consider Riemannian 4-manifolds that Gromov-Hausdorff converge to a lower dimensional limit space with the Ricci tensor going to zero. Among other things, we show that if the limit space is two dimensional then under some mild assumptions, the limiting four dimensional geometry away from the curvature blowup region is semiflat Kaehler.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":"38 1","pages":"79-98"},"PeriodicalIF":0.9,"publicationDate":"2020-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138540716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Subadditivity of Kodaira dimension does not hold in positive characteristic","authors":"Paolo Cascini, Sho Ejiri, Lei Zhang","doi":"10.4171/cmh/517","DOIUrl":"https://doi.org/10.4171/cmh/517","url":null,"abstract":"Over any algebraically closed field of positive characteristic, we construct examples of fibrations violating subadditivity of Kodaira dimension.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2020-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45146472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Uniqueness of the measure of maximal entropy for the standard map","authors":"Davi Obata","doi":"10.4171/CMH/508","DOIUrl":"https://doi.org/10.4171/CMH/508","url":null,"abstract":"In this paper we prove that for sufficiently large parameters the standard map has a unique measure of maximal entropy (m.m.e.). Moreover, we prove: the m.m.e. is Bernoulli, and the periodic points with Lyapunov exponents bounded away from zero equidistribute with respect to the m.m.e. We prove some estimates regarding the Hausdorff dimension of the m.m.e. and about the density of the support of the measure on the manifold. For a generic large parameter, we prove that the support of the m.m.e. has Hausdorff dimension $2$. We also obtain the $C^2$-robustness of several of these properties.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2020-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44657053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Schauder estimates on products of cones","authors":"Martin de Borbon, Gregory Edwards","doi":"10.4171/CMH/509","DOIUrl":"https://doi.org/10.4171/CMH/509","url":null,"abstract":"We prove an interior Schauder estimate for the Laplacian on metric products of two dimensional cones with a Euclidean factor, generalizing the work of Donaldson and reproving the Schauder estimate of Guo-Song. We characterize the space of homogeneous subquadratic harmonic functions on products of cones, and identify scales at which geodesic balls can be well approximated by balls centered at the apex of an appropriate model cone. We then locally approximate solutions by subquadratic harmonic functions at these scales to measure the Holder continuity of second derivatives.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2020-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43828669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sets with constant normal in Carnot groups: properties and examples","authors":"C. Bellettini, E. Donne","doi":"10.4171/CMH/510","DOIUrl":"https://doi.org/10.4171/CMH/510","url":null,"abstract":"We analyze subsets of Carnot groups that have intrinsic constant normal, as they appear in the blowup study of sets that have finite sub-Riemannian perimeter. The purpose of this paper is threefold. First, we prove some mild regularity and structural results in arbitrary Carnot groups. Namely, we show that for every constant-normal set in a Carnot group its sub-Riemannian-Lebesgue representative is regularly open, contractible, and its topological boundary coincides with the reduced boundary and with the measure-theoretic boundary. We infer these properties from a cone property. Such a cone will be a semisubgroup with nonempty interior that is canonically associated with the normal direction. We characterize the constant-normal sets exactly as those that are arbitrary unions of translations of such semisubgroups. Second, making use of such a characterization, we provide some pathological examples in the specific case of the free-Carnot group of step 3 and rank 2. Namely, we construct a constant normal set that, with respect to any Riemannian metric, is not of locally finite perimeter; we also construct an example with non-unique intrinsic blowup at some point, showing that it has different upper and lower sub-Riemannian density at the origin. Third, we show that in Carnot groups of step 4 or less, every constant-normal set is intrinsically rectifiable, in the sense of Franchi, Serapioni, and Serra Cassano.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2019-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47370170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Irreducibility of a free group endomorphism is a mapping torus invariant","authors":"Jean Pierre Mutanguha","doi":"10.4171/cmh/506","DOIUrl":"https://doi.org/10.4171/cmh/506","url":null,"abstract":"We prove that the property of a free group endomorphism being irreducible is a group invariant of the ascending HNN extension it defines. This answers a question posed by Dowdall-Kapovich-Leininger. We further prove that being irreducible and atoroidal is a commensurability invariant. The invariance follows from an algebraic characterization of ascending HNN extensions that determines exactly when their defining endomorphisms are irreducible and atoroidal; specifically, we show that the endomorphism is irreducible and atoroidal if and only if the ascending HNN extension has no infinite index subgroups that are ascending HNN extensions.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2019-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49285538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On Borel Anosov representations in even dimensions","authors":"Konstantinos Tsouvalas","doi":"10.4171/cmh/502","DOIUrl":"https://doi.org/10.4171/cmh/502","url":null,"abstract":"We prove that a word hyperbolic group which admits a $P_{2q+1}$-Anosov representation into $mathsf{PGL}(4q+2, mathbb{R})$ contains a finite-index subgroup which is either free or a surface group. As a consequence, we give an affirmative answer to Sambarino's question for Borel Anosov representations into $mathsf{SL}(4q+2,mathbb{R})$.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2019-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45330124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}