关于锥积的Schauder估计

IF 1.1 3区 数学 Q1 MATHEMATICS
Martin de Borbon, Gregory Edwards
{"title":"关于锥积的Schauder估计","authors":"Martin de Borbon, Gregory Edwards","doi":"10.4171/CMH/509","DOIUrl":null,"url":null,"abstract":"We prove an interior Schauder estimate for the Laplacian on metric products of two dimensional cones with a Euclidean factor, generalizing the work of Donaldson and reproving the Schauder estimate of Guo-Song. We characterize the space of homogeneous subquadratic harmonic functions on products of cones, and identify scales at which geodesic balls can be well approximated by balls centered at the apex of an appropriate model cone. We then locally approximate solutions by subquadratic harmonic functions at these scales to measure the Holder continuity of second derivatives.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2020-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Schauder estimates on products of cones\",\"authors\":\"Martin de Borbon, Gregory Edwards\",\"doi\":\"10.4171/CMH/509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove an interior Schauder estimate for the Laplacian on metric products of two dimensional cones with a Euclidean factor, generalizing the work of Donaldson and reproving the Schauder estimate of Guo-Song. We characterize the space of homogeneous subquadratic harmonic functions on products of cones, and identify scales at which geodesic balls can be well approximated by balls centered at the apex of an appropriate model cone. We then locally approximate solutions by subquadratic harmonic functions at these scales to measure the Holder continuity of second derivatives.\",\"PeriodicalId\":50664,\"journal\":{\"name\":\"Commentarii Mathematici Helvetici\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commentarii Mathematici Helvetici\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/CMH/509\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/CMH/509","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

我们用欧氏因子证明了拉普拉斯算子在二维锥的度量乘积上的一个内部Schauder估计,推广了Donaldson的工作,并重新提出了郭松的Schauder估值。我们在锥的乘积上刻画了齐次二次调和函数的空间,并确定了测地线球可以被以适当模型锥的顶点为中心的球很好地近似的尺度。然后,我们用次二次谐波函数在这些尺度上局部逼近解,以测量二阶导数的Holder连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Schauder estimates on products of cones
We prove an interior Schauder estimate for the Laplacian on metric products of two dimensional cones with a Euclidean factor, generalizing the work of Donaldson and reproving the Schauder estimate of Guo-Song. We characterize the space of homogeneous subquadratic harmonic functions on products of cones, and identify scales at which geodesic balls can be well approximated by balls centered at the apex of an appropriate model cone. We then locally approximate solutions by subquadratic harmonic functions at these scales to measure the Holder continuity of second derivatives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals. Commentarii Mathematici Helvetici is covered in: Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信