{"title":"几乎里奇平面4-流形的坍缩几何","authors":"John Lott","doi":"10.4171/cmh/481","DOIUrl":null,"url":null,"abstract":"We consider Riemannian 4-manifolds that Gromov-Hausdorff converge to a lower dimensional limit space with the Ricci tensor going to zero. Among other things, we show that if the limit space is two dimensional then under some mild assumptions, the limiting four dimensional geometry away from the curvature blowup region is semiflat Kaehler.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":"38 1","pages":"79-98"},"PeriodicalIF":1.1000,"publicationDate":"2020-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The collapsing geometry of almost Ricci-flat 4-manifolds\",\"authors\":\"John Lott\",\"doi\":\"10.4171/cmh/481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider Riemannian 4-manifolds that Gromov-Hausdorff converge to a lower dimensional limit space with the Ricci tensor going to zero. Among other things, we show that if the limit space is two dimensional then under some mild assumptions, the limiting four dimensional geometry away from the curvature blowup region is semiflat Kaehler.\",\"PeriodicalId\":50664,\"journal\":{\"name\":\"Commentarii Mathematici Helvetici\",\"volume\":\"38 1\",\"pages\":\"79-98\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commentarii Mathematici Helvetici\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/cmh/481\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/cmh/481","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The collapsing geometry of almost Ricci-flat 4-manifolds
We consider Riemannian 4-manifolds that Gromov-Hausdorff converge to a lower dimensional limit space with the Ricci tensor going to zero. Among other things, we show that if the limit space is two dimensional then under some mild assumptions, the limiting four dimensional geometry away from the curvature blowup region is semiflat Kaehler.
期刊介绍:
Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals.
Commentarii Mathematici Helvetici is covered in:
Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.