RCD空间的等距浸没

IF 1.1 3区 数学 Q1 MATHEMATICS
Shouhei Honda
{"title":"RCD空间的等距浸没","authors":"Shouhei Honda","doi":"10.4171/cmh/519","DOIUrl":null,"url":null,"abstract":"We prove that if an RCD space has a regular isometric immersion in a Euclidean space, then the immersion is a locally bi-Lipschitz embedding map. This result leads us to prove that if a compact non-collapsed RCD space has an isometric immersion in a Euclidean space via an eigenmap, then the eigenmap is a locally bi-Lipschitz embedding map to a sphere, which generalizes a fundamental theorem of Takahashi in submanifold theory to a non-smooth setting. Applications of these results include a topological sphere theorem and topological finiteness theorems, which are new even for closed Riemannian manifolds.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Isometric immersions of RCD spaces\",\"authors\":\"Shouhei Honda\",\"doi\":\"10.4171/cmh/519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that if an RCD space has a regular isometric immersion in a Euclidean space, then the immersion is a locally bi-Lipschitz embedding map. This result leads us to prove that if a compact non-collapsed RCD space has an isometric immersion in a Euclidean space via an eigenmap, then the eigenmap is a locally bi-Lipschitz embedding map to a sphere, which generalizes a fundamental theorem of Takahashi in submanifold theory to a non-smooth setting. Applications of these results include a topological sphere theorem and topological finiteness theorems, which are new even for closed Riemannian manifolds.\",\"PeriodicalId\":50664,\"journal\":{\"name\":\"Commentarii Mathematici Helvetici\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commentarii Mathematici Helvetici\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/cmh/519\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/cmh/519","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

我们证明了如果RCD空间在欧几里得空间中具有正则等距浸入,则该浸入是局部双Lipschitz嵌入映射。这一结果使我们证明了如果一个紧致的非坍缩RCD空间通过一个本征映射在欧几里得空间中具有等距浸入,那么该本征映射是一个到球体的局部双Lipschitz嵌入映射,这将子流形理论中Takahashi的一个基本定理推广到了一个非光滑集。这些结果的应用包括拓扑球定理和拓扑有限性定理,这些定理甚至对于闭黎曼流形也是新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Isometric immersions of RCD spaces
We prove that if an RCD space has a regular isometric immersion in a Euclidean space, then the immersion is a locally bi-Lipschitz embedding map. This result leads us to prove that if a compact non-collapsed RCD space has an isometric immersion in a Euclidean space via an eigenmap, then the eigenmap is a locally bi-Lipschitz embedding map to a sphere, which generalizes a fundamental theorem of Takahashi in submanifold theory to a non-smooth setting. Applications of these results include a topological sphere theorem and topological finiteness theorems, which are new even for closed Riemannian manifolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals. Commentarii Mathematici Helvetici is covered in: Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信