{"title":"Ulrich bundles on cubic fourfolds","authors":"Daniele Faenzi, Yeongrak Kim","doi":"10.4171/cmh/546","DOIUrl":"https://doi.org/10.4171/cmh/546","url":null,"abstract":"We show the existence of rank 6 Ulrich bundles on a smooth cubic fourfold. First, we construct a simple sheaf E of rank 6 as an elementary modification of an ACM bundle of rank 6 on a smooth cubic fourfold. Such an E appears as an extension of two Lehn-Lehn-Sorger-van Straten sheaves. Then we prove that a general deformation of E(1) becomes Ulrich. In particular, this says that general cubic fourfolds have Ulrich complexity 6.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43334076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Permutation modules and cohomological singularity","authors":"Paul Balmer, Martin Gallauer","doi":"10.4171/cmh/534","DOIUrl":"https://doi.org/10.4171/cmh/534","url":null,"abstract":". We define a new invariant of finitely generated representations of a finite group, with coefficients in a commutative noetherian ring. This invariant uses group cohomology and takes values in the singularity category of the coefficient ring. It detects which representations are controlled by permutation modules.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2020-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44949368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A model for random three-manifolds","authors":"Bram Petri, Jean Raimbault","doi":"10.4171/cmh/539","DOIUrl":"https://doi.org/10.4171/cmh/539","url":null,"abstract":"We study compact three-manifolds with boundary obtained by randomly gluing together truncated tetrahedra along their faces. We prove that, asymptotically almost surely as the number of tetrahedra tends to infinity, these manifolds are connected and have a single boundary component. We prove a law of large numbers for the genus of this boundary component, we show that the Heegaard genus of these manifolds is linear in the number of tetrahedra and we bound their first Betti number. \u0000We also show that, asymptotically almost surely as the number of tetrahedra tends to infinity, our manifolds admit a unique hyperbolic metric with totally geodesic boundary. We prove a law of large numbers for the volume of this metric, prove that the associated Laplacian has a uniform spectral gap and show that the diameter of our manifolds is logarithmic as a function of their volume. Finally, we determine the Benjamini--Schramm limit of our sequence of random manifolds.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":"1 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2020-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42076509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Filling random cycles","authors":"Fedor Manin","doi":"10.4171/CMH/520","DOIUrl":"https://doi.org/10.4171/CMH/520","url":null,"abstract":"We compute the asymptotic behavior of the average-case filling volume for certain models of random Lipschitz cycles in the unit cube and sphere. For example, we estimate the minimal area of a Seifert surface for a model of random knots first studied by Millett. This is a generalization of the classical Ajtai--Komlos--Tusnady optimal matching theorem from combinatorial probability. The author hopes for applications to the topology of random links, random maps between spheres, and other models of random geometric objects.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2020-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43149941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Slow manifolds for infinite-dimensional evolution equations","authors":"Felix Hummel, C. Kuehn","doi":"10.4171/cmh/527","DOIUrl":"https://doi.org/10.4171/cmh/527","url":null,"abstract":"We extend classical finite-dimensional Fenichel theory in two directions to infinite dimensions. Under comparably weak assumptions we show that the solution of an infinite-dimensional fast-slow system is approximated well by the corresponding slow flow. After that we construct a two-parameter family of slow manifolds $S_{epsilon,zeta}$ under more restrictive assumptions on the linear part of the slow equation. The second parameter $zeta$ does not appear in the finite-dimensional setting and describes a certain splitting of the slow variable space in a fast decaying part and its complement. The finite-dimensional setting is contained as a special case in which $S_{epsilon,zeta}$ does not depend on $zeta$. Finally, we apply our new techniques to three examples of fast-slow systems of partial differential equations.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2020-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42703909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Topological dynamics beyond Polish groups","authors":"Gianluca Basso, Andy Zucker","doi":"10.4171/CMH/521","DOIUrl":"https://doi.org/10.4171/CMH/521","url":null,"abstract":"When $G$ is a Polish group, metrizability of the universal minimal flow has been shown to be a robust dividing line in the complexity of the topological dynamics of $G$. We introduce a class of groups, the CAP groups, which provides a neat generalization of this dividing line to all topological groups. We prove a number of characterizations of this class, having very different flavors, and use these to prove that the class of CAP groups enjoys a number of nice closure properties. As a concrete application, we compute the universal minimal flow of the homeomorphism groups of several scattered topological spaces, building on recent work of Gheysens.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2020-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49641591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Opening nodes in the DPW method: Co-planar case","authors":"M. Traizet","doi":"10.4171/cmh/524","DOIUrl":"https://doi.org/10.4171/cmh/524","url":null,"abstract":"We combine the DPW method and opening nodes to construct embedded surfaces of positive constant mean curvature with Delaunay ends in euclidean space, with no limitation to the genus or number of ends.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45961161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bounds on the Lagrangian spectral metric in cotangent bundles","authors":"P. Biran, O. Cornea","doi":"10.4171/cmh/522","DOIUrl":"https://doi.org/10.4171/cmh/522","url":null,"abstract":"Let $N$ be a closed manifold and $U subset T^*(N)$ a bounded domain in the cotangent bundle of $N$, containing the zero-section. A conjecture due to Viterbo asserts that the spectral metric for Lagrangian submanifolds that are exact-isotopic to the zero-section is bounded. In this paper we establish an upper bound on the spectral distance between two such Lagrangians $L_0, L_1$, which depends linearly on the boundary depth of the Floer complexes of $(L_0, F)$ and $(L_1, F)$, where $F$ is a fiber of the cotangent bundle.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2020-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44801235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Self-referential discs and the light bulb lemma","authors":"David Gabai","doi":"10.4171/cmh/518","DOIUrl":"https://doi.org/10.4171/cmh/518","url":null,"abstract":"We show how self-referential discs in 4-manifolds lead to the construction of pairs of discs with a common geometrically dual sphere which are properly homotopic rel $partial$ and coincide near their boundaries, yet are not properly isotopic. This occurs in manifolds without 2-torsion in their fundamental group, thereby exhibiting phenomena not seen with spheres, e.g. the boundary connect sum of $S^2times D^2$ and $S^1times B^3$. On the other hand we show that two such discs are isotopic rel $partial$ if the manifold is simply connected. We construct in $S^2times D^2natural S^1times B^3$ a properly embedded 3-ball properly homotopic to a $z_0times B^3$ but not properly isotopic to $z_0times B^3$.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2020-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48567466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}