{"title":"Bounds on the Lagrangian spectral metric in cotangent bundles","authors":"P. Biran, O. Cornea","doi":"10.4171/cmh/522","DOIUrl":null,"url":null,"abstract":"Let $N$ be a closed manifold and $U \\subset T^*(N)$ a bounded domain in the cotangent bundle of $N$, containing the zero-section. A conjecture due to Viterbo asserts that the spectral metric for Lagrangian submanifolds that are exact-isotopic to the zero-section is bounded. In this paper we establish an upper bound on the spectral distance between two such Lagrangians $L_0, L_1$, which depends linearly on the boundary depth of the Floer complexes of $(L_0, F)$ and $(L_1, F)$, where $F$ is a fiber of the cotangent bundle.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/cmh/522","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8
Abstract
Let $N$ be a closed manifold and $U \subset T^*(N)$ a bounded domain in the cotangent bundle of $N$, containing the zero-section. A conjecture due to Viterbo asserts that the spectral metric for Lagrangian submanifolds that are exact-isotopic to the zero-section is bounded. In this paper we establish an upper bound on the spectral distance between two such Lagrangians $L_0, L_1$, which depends linearly on the boundary depth of the Floer complexes of $(L_0, F)$ and $(L_1, F)$, where $F$ is a fiber of the cotangent bundle.
期刊介绍:
Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals.
Commentarii Mathematici Helvetici is covered in:
Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.