Slow manifolds for infinite-dimensional evolution equations

IF 1.1 3区 数学 Q1 MATHEMATICS
Felix Hummel, C. Kuehn
{"title":"Slow manifolds for infinite-dimensional evolution equations","authors":"Felix Hummel, C. Kuehn","doi":"10.4171/cmh/527","DOIUrl":null,"url":null,"abstract":"We extend classical finite-dimensional Fenichel theory in two directions to infinite dimensions. Under comparably weak assumptions we show that the solution of an infinite-dimensional fast-slow system is approximated well by the corresponding slow flow. After that we construct a two-parameter family of slow manifolds $S_{\\epsilon,\\zeta}$ under more restrictive assumptions on the linear part of the slow equation. The second parameter $\\zeta$ does not appear in the finite-dimensional setting and describes a certain splitting of the slow variable space in a fast decaying part and its complement. The finite-dimensional setting is contained as a special case in which $S_{\\epsilon,\\zeta}$ does not depend on $\\zeta$. Finally, we apply our new techniques to three examples of fast-slow systems of partial differential equations.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/cmh/527","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

We extend classical finite-dimensional Fenichel theory in two directions to infinite dimensions. Under comparably weak assumptions we show that the solution of an infinite-dimensional fast-slow system is approximated well by the corresponding slow flow. After that we construct a two-parameter family of slow manifolds $S_{\epsilon,\zeta}$ under more restrictive assumptions on the linear part of the slow equation. The second parameter $\zeta$ does not appear in the finite-dimensional setting and describes a certain splitting of the slow variable space in a fast decaying part and its complement. The finite-dimensional setting is contained as a special case in which $S_{\epsilon,\zeta}$ does not depend on $\zeta$. Finally, we apply our new techniques to three examples of fast-slow systems of partial differential equations.
无限维演化方程的慢流形
我们从两个方向将经典有限维Fenichel理论推广到无限维。在较弱的假设条件下,我们证明了无限维快-慢系统的解可以很好地近似于相应的慢流。然后,在更严格的假设下,我们构造了一个双参数的慢流形族$S_{\epsilon,\zeta}$。第二个参数$\zeta$不出现在有限维设置中,它描述了在快速衰减部分及其补充部分中缓慢变量空间的某种分裂。有限维设置作为一种特殊情况包含,其中$S_{\epsilon,\zeta}$不依赖于$\zeta$。最后,我们将我们的新技术应用于三个快慢系统的偏微分方程的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals. Commentarii Mathematici Helvetici is covered in: Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信