Irreducibility of a free group endomorphism is a mapping torus invariant

IF 1.1 3区 数学 Q1 MATHEMATICS
Jean Pierre Mutanguha
{"title":"Irreducibility of a free group endomorphism is a mapping torus invariant","authors":"Jean Pierre Mutanguha","doi":"10.4171/cmh/506","DOIUrl":null,"url":null,"abstract":"We prove that the property of a free group endomorphism being irreducible is a group invariant of the ascending HNN extension it defines. This answers a question posed by Dowdall-Kapovich-Leininger. We further prove that being irreducible and atoroidal is a commensurability invariant. The invariance follows from an algebraic characterization of ascending HNN extensions that determines exactly when their defining endomorphisms are irreducible and atoroidal; specifically, we show that the endomorphism is irreducible and atoroidal if and only if the ascending HNN extension has no infinite index subgroups that are ascending HNN extensions.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2019-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/cmh/506","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

We prove that the property of a free group endomorphism being irreducible is a group invariant of the ascending HNN extension it defines. This answers a question posed by Dowdall-Kapovich-Leininger. We further prove that being irreducible and atoroidal is a commensurability invariant. The invariance follows from an algebraic characterization of ascending HNN extensions that determines exactly when their defining endomorphisms are irreducible and atoroidal; specifically, we show that the endomorphism is irreducible and atoroidal if and only if the ascending HNN extension has no infinite index subgroups that are ascending HNN extensions.
自由群自同态的不可约性是映射环面不变量
我们证明了自由群自同态不可约的性质是它定义的上升HNN扩张的群不变量。这回答了Dowdall Kapovich Leininger提出的一个问题。我们进一步证明了不可约和阿托向是可公度不变量。不变性来自于上升HNN扩展的代数表征,该代数表征精确地确定了它们的定义自同态何时是不可约的和阿托向的;特别地,我们证明了自同态是不可约的和阿托向的,当且仅当上升HNN扩张没有作为上升HNN扩展的无限指数子群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals. Commentarii Mathematici Helvetici is covered in: Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信