Dynamics of Partial Differential Equations最新文献

筛选
英文 中文
Traveling waves of a generalized nonlinear Beam equation 广义非线性梁方程的行波
IF 1.3 3区 数学
Dynamics of Partial Differential Equations Pub Date : 2022-01-01 DOI: 10.4310/dpde.2022.v19.n2.a1
A. Esfahani, S. Levandosky
{"title":"Traveling waves of a generalized nonlinear Beam equation","authors":"A. Esfahani, S. Levandosky","doi":"10.4310/dpde.2022.v19.n2.a1","DOIUrl":"https://doi.org/10.4310/dpde.2022.v19.n2.a1","url":null,"abstract":"","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70427191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Constant vorticity atmospheric Ekman flows in the modified $beta$-plane approximation 修正$ β $-平面近似中的等涡度大气Ekman流
IF 1.3 3区 数学
Dynamics of Partial Differential Equations Pub Date : 2022-01-01 DOI: 10.4310/dpde.2022.v19.n4.a4
Y. Guan, Michal Feckan, Jinrong Wang
{"title":"Constant vorticity atmospheric Ekman flows in the modified $beta$-plane approximation","authors":"Y. Guan, Michal Feckan, Jinrong Wang","doi":"10.4310/dpde.2022.v19.n4.a4","DOIUrl":"https://doi.org/10.4310/dpde.2022.v19.n4.a4","url":null,"abstract":"","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70426895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An elliptic nonlinear system of multiple functions with application 椭圆型非线性多函数系统及其应用
IF 1.3 3区 数学
Dynamics of Partial Differential Equations Pub Date : 2022-01-01 DOI: 10.4310/dpde.2022.v19.n2.a3
J. H. Kang, Timothy Robertson
{"title":"An elliptic nonlinear system of multiple functions with application","authors":"J. H. Kang, Timothy Robertson","doi":"10.4310/dpde.2022.v19.n2.a3","DOIUrl":"https://doi.org/10.4310/dpde.2022.v19.n2.a3","url":null,"abstract":"","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70427202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On the well-posedness of the incompressible Euler equations in a larger space of Besov–Morrey type Besov-Morrey型大空间不可压缩欧拉方程的适定性
IF 1.3 3区 数学
Dynamics of Partial Differential Equations Pub Date : 2022-01-01 DOI: 10.4310/dpde.2022.v19.n1.a2
L. Ferreira, J. E. Pérez-López
{"title":"On the well-posedness of the incompressible Euler equations in a larger space of Besov–Morrey type","authors":"L. Ferreira, J. E. Pérez-López","doi":"10.4310/dpde.2022.v19.n1.a2","DOIUrl":"https://doi.org/10.4310/dpde.2022.v19.n1.a2","url":null,"abstract":"","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70427141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Asymptotic behavior of global solutions to some multidimensional quasilinear hyperbolic systems 一类多维拟线性双曲型系统整体解的渐近性态
IF 1.3 3区 数学
Dynamics of Partial Differential Equations Pub Date : 2022-01-01 DOI: 10.4310/dpde.2022.v19.n4.a2
Dongbing Zha, Minghui Sun
{"title":"Asymptotic behavior of global solutions to some multidimensional quasilinear hyperbolic systems","authors":"Dongbing Zha, Minghui Sun","doi":"10.4310/dpde.2022.v19.n4.a2","DOIUrl":"https://doi.org/10.4310/dpde.2022.v19.n4.a2","url":null,"abstract":"","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70427332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Liouville type theorem for the stationary magnetohydrodynamic equations in weighted mixed-norm Lebesgue spaces 加权混合范数Lebesgue空间中平稳磁流体动力学方程的Liouville型定理
IF 1.3 3区 数学
Dynamics of Partial Differential Equations Pub Date : 2021-12-02 DOI: 10.4310/dpde.2021.v18.n4.a4
Huiying Fan, Meng Wang
{"title":"The Liouville type theorem for the stationary magnetohydrodynamic equations in weighted mixed-norm Lebesgue spaces","authors":"Huiying Fan, Meng Wang","doi":"10.4310/dpde.2021.v18.n4.a4","DOIUrl":"https://doi.org/10.4310/dpde.2021.v18.n4.a4","url":null,"abstract":"In this paper, we are concentrated on demonstrating the Liouville type theorem for the stationary Magnetohydrodynamic equations in mixednorm Lebesgue spaces and weighted mixed-norm Lebesgue spaces. In particular, we show that, under some sufficient conditions in (weighted) mixed-norm Lebesgue spaces, the solution of stationary MHDs are identically zero. Precisely, we investigate solutions of MHDs that may decay to zero in different rates as $lvert x rvert to infty$ in different directions. In un-mixed norm case, the result recovers available results. With some additional geometric assumptions on the supports of solutions in weighted mixed-norm Lebesgue spaces, this work also provides several other important Liouville type theorems of solutions in weighted mixed-norm Lebesgue spaces.","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":"35 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138539415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global wellposedness for 2D quasilinear wave without Lorentz 二维非洛伦兹拟线性波的全局适定性
IF 1.3 3区 数学
Dynamics of Partial Differential Equations Pub Date : 2021-05-23 DOI: 10.4310/dpde.2022.v19.n2.a2
Xinyue Cheng, Dong Li, Jiao Xu, Dongbing Zha
{"title":"Global wellposedness for 2D quasilinear wave without Lorentz","authors":"Xinyue Cheng, Dong Li, Jiao Xu, Dongbing Zha","doi":"10.4310/dpde.2022.v19.n2.a2","DOIUrl":"https://doi.org/10.4310/dpde.2022.v19.n2.a2","url":null,"abstract":"We consider the two-dimensional quasilinear wave equations with standard nullform type quadratic nonlinearities. We prove global wellposedness without using the Lorentz boost vector fields.","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46257929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A remark on attractor bifurcation 关于吸引子分岔的评述
IF 1.3 3区 数学
Dynamics of Partial Differential Equations Pub Date : 2021-03-06 DOI: 10.4310/DPDE.2021.V18.N2.A4
Chunqiu Li, Desheng Li, Jintao Wang
{"title":"A remark on attractor bifurcation","authors":"Chunqiu Li, Desheng Li, Jintao Wang","doi":"10.4310/DPDE.2021.V18.N2.A4","DOIUrl":"https://doi.org/10.4310/DPDE.2021.V18.N2.A4","url":null,"abstract":"In this paper we present some local dynamic bifurcation results in terms of invariant sets of nonlinear evolution equations. We show that if the trivial solution is an isolated invariant set of the system at the critical value $lambda=lambda_0$, then either there exists a one-sided neighborhood $I^-$ of $lambda_0$ such that for each $lambdain I^-$, the system bifurcates from the trivial solution to an isolated nonempty compact invariant set $K_lambda$ with $0notin K_lambda$, or there is a one-sided neighborhood $I^+$ of $lambda_0$ such that the system undergoes an attractor bifurcation for $lambdain I^+$ from $(0,lambda_0)$. Then we give a modified version of the attractor bifurcation theorem. Finally, we consider the classical Swift-Hohenberg equation and illustrate how to apply our results to a concrete evolution equation.","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":"18 1","pages":"157-172"},"PeriodicalIF":1.3,"publicationDate":"2021-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46671604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Inviscid limit of the inhomogeneous incompressible Navier–Stokes equations under the weak Kolmogorov hypothesis in $mathbb{R}^3$ $mathbb{R}^3$中弱Kolmogorov假设下非齐次不可压缩Navier-Stokes方程的无粘极限
IF 1.3 3区 数学
Dynamics of Partial Differential Equations Pub Date : 2021-02-04 DOI: 10.4310/dpde.2022.v19.n3.a2
Dixi Wang, Cheng Yu, Xinhua Zhao
{"title":"Inviscid limit of the inhomogeneous incompressible Navier–Stokes equations under the weak Kolmogorov hypothesis in $mathbb{R}^3$","authors":"Dixi Wang, Cheng Yu, Xinhua Zhao","doi":"10.4310/dpde.2022.v19.n3.a2","DOIUrl":"https://doi.org/10.4310/dpde.2022.v19.n3.a2","url":null,"abstract":"In this paper, we consider the inviscid limit of inhomogeneous incompressible Navier-Stokes equations under the weak Kolmogorov hypothesis in R. In particular, we first deduce the Kolmogorov-type hypothesis in R, which yields the uniform bounds of α-order fractional derivatives of √ ρμu in Lx for some α > 0, independent of the viscosity. The uniform bounds can provide strong convergence of √ ρμu in L space. This shows that the inviscid limit is a weak solution to the corresponding Euler equations.","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43294829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A remark on the Strichartz inequality in one dimension 一维中strstrichartz不等式的一个注释
IF 1.3 3区 数学
Dynamics of Partial Differential Equations Pub Date : 2021-01-04 DOI: 10.4310/dpde.2022.v19.n2.a4
R. Frier, Shuanglin Shao
{"title":"A remark on the Strichartz inequality in one dimension","authors":"R. Frier, Shuanglin Shao","doi":"10.4310/dpde.2022.v19.n2.a4","DOIUrl":"https://doi.org/10.4310/dpde.2022.v19.n2.a4","url":null,"abstract":"In this paper, we study the extremal problem for the Strichartz inequality for the Schrödinger equation on R. We show that the solutions to the associated Euler-Lagrange equation are exponentially decaying in the Fourier space and thus can be extended to be complex analytic. Consequently we provide a new proof to the characterization of the extremal functions: the only extremals are Gaussian functions, which was investigated previously by Foschi [7] and Hundertmark-Zharnitsky [11].","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43330944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信