A remark on attractor bifurcation

IF 1.1 3区 数学 Q2 MATHEMATICS, APPLIED
Chunqiu Li, Desheng Li, Jintao Wang
{"title":"A remark on attractor bifurcation","authors":"Chunqiu Li, Desheng Li, Jintao Wang","doi":"10.4310/DPDE.2021.V18.N2.A4","DOIUrl":null,"url":null,"abstract":"In this paper we present some local dynamic bifurcation results in terms of invariant sets of nonlinear evolution equations. We show that if the trivial solution is an isolated invariant set of the system at the critical value $\\lambda=\\lambda_0$, then either there exists a one-sided neighborhood $I^-$ of $\\lambda_0$ such that for each $\\lambda\\in I^-$, the system bifurcates from the trivial solution to an isolated nonempty compact invariant set $K_\\lambda$ with $0\\not\\in K_\\lambda$, or there is a one-sided neighborhood $I^+$ of $\\lambda_0$ such that the system undergoes an attractor bifurcation for $\\lambda\\in I^+$ from $(0,\\lambda_0)$. Then we give a modified version of the attractor bifurcation theorem. Finally, we consider the classical Swift-Hohenberg equation and illustrate how to apply our results to a concrete evolution equation.","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":"18 1","pages":"157-172"},"PeriodicalIF":1.1000,"publicationDate":"2021-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/DPDE.2021.V18.N2.A4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper we present some local dynamic bifurcation results in terms of invariant sets of nonlinear evolution equations. We show that if the trivial solution is an isolated invariant set of the system at the critical value $\lambda=\lambda_0$, then either there exists a one-sided neighborhood $I^-$ of $\lambda_0$ such that for each $\lambda\in I^-$, the system bifurcates from the trivial solution to an isolated nonempty compact invariant set $K_\lambda$ with $0\not\in K_\lambda$, or there is a one-sided neighborhood $I^+$ of $\lambda_0$ such that the system undergoes an attractor bifurcation for $\lambda\in I^+$ from $(0,\lambda_0)$. Then we give a modified version of the attractor bifurcation theorem. Finally, we consider the classical Swift-Hohenberg equation and illustrate how to apply our results to a concrete evolution equation.
关于吸引子分岔的评述
本文给出了一类非线性演化方程的不变量集的局部动态分岔结果。我们证明了如果平凡解是系统在临界值$\lambda=\lambda_0$处的孤立不变集,那么要么存在$\lambda_0$的单侧邻域$I^-$,使得对于每一个$\lambda\ I^-$,系统从平凡解分叉到一个孤立的非空紧不变集$K_\lambda$,其中$0\not\在K_\lambda$中;或者存在$\lambda_0$的单侧邻域$I^+$,使得系统从$(0,\lambda_0)$中$\lambda\在$I^+$中发生吸引子分岔。然后给出了吸引子分岔定理的一个修正版本。最后,我们考虑经典的Swift-Hohenberg方程,并说明如何将我们的结果应用于具体的演化方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishes novel results in the areas of partial differential equations and dynamical systems in general, with priority given to dynamical system theory or dynamical aspects of partial differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信