一维中strstrichartz不等式的一个注释

IF 1.1 3区 数学 Q2 MATHEMATICS, APPLIED
R. Frier, Shuanglin Shao
{"title":"一维中strstrichartz不等式的一个注释","authors":"R. Frier, Shuanglin Shao","doi":"10.4310/dpde.2022.v19.n2.a4","DOIUrl":null,"url":null,"abstract":"In this paper, we study the extremal problem for the Strichartz inequality for the Schrödinger equation on R. We show that the solutions to the associated Euler-Lagrange equation are exponentially decaying in the Fourier space and thus can be extended to be complex analytic. Consequently we provide a new proof to the characterization of the extremal functions: the only extremals are Gaussian functions, which was investigated previously by Foschi [7] and Hundertmark-Zharnitsky [11].","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A remark on the Strichartz inequality in one dimension\",\"authors\":\"R. Frier, Shuanglin Shao\",\"doi\":\"10.4310/dpde.2022.v19.n2.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the extremal problem for the Strichartz inequality for the Schrödinger equation on R. We show that the solutions to the associated Euler-Lagrange equation are exponentially decaying in the Fourier space and thus can be extended to be complex analytic. Consequently we provide a new proof to the characterization of the extremal functions: the only extremals are Gaussian functions, which was investigated previously by Foschi [7] and Hundertmark-Zharnitsky [11].\",\"PeriodicalId\":50562,\"journal\":{\"name\":\"Dynamics of Partial Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamics of Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/dpde.2022.v19.n2.a4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/dpde.2022.v19.n2.a4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了R上Schrödinger方程的Strichartz不等式的极值问题。我们证明了相关的欧拉-拉格朗日方程的解在傅立叶空间中是指数衰减的,因此可以推广为复解析的。因此,我们为极值函数的刻画提供了一个新的证明:唯一的极值是高斯函数,这是Foschi[7]和Hundertmark-Zarnitsky[11]之前研究过的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A remark on the Strichartz inequality in one dimension
In this paper, we study the extremal problem for the Strichartz inequality for the Schrödinger equation on R. We show that the solutions to the associated Euler-Lagrange equation are exponentially decaying in the Fourier space and thus can be extended to be complex analytic. Consequently we provide a new proof to the characterization of the extremal functions: the only extremals are Gaussian functions, which was investigated previously by Foschi [7] and Hundertmark-Zharnitsky [11].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishes novel results in the areas of partial differential equations and dynamical systems in general, with priority given to dynamical system theory or dynamical aspects of partial differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信