The Liouville type theorem for the stationary magnetohydrodynamic equations in weighted mixed-norm Lebesgue spaces

IF 1.1 3区 数学 Q2 MATHEMATICS, APPLIED
Huiying Fan, Meng Wang
{"title":"The Liouville type theorem for the stationary magnetohydrodynamic equations in weighted mixed-norm Lebesgue spaces","authors":"Huiying Fan, Meng Wang","doi":"10.4310/dpde.2021.v18.n4.a4","DOIUrl":null,"url":null,"abstract":"In this paper, we are concentrated on demonstrating the Liouville type theorem for the stationary Magnetohydrodynamic equations in mixednorm Lebesgue spaces and weighted mixed-norm Lebesgue spaces. In particular, we show that, under some sufficient conditions in (weighted) mixed-norm Lebesgue spaces, the solution of stationary MHDs are identically zero. Precisely, we investigate solutions of MHDs that may decay to zero in different rates as $\\lvert x \\rvert \\to \\infty$ in different directions. In un-mixed norm case, the result recovers available results. With some additional geometric assumptions on the supports of solutions in weighted mixed-norm Lebesgue spaces, this work also provides several other important Liouville type theorems of solutions in weighted mixed-norm Lebesgue spaces.","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/dpde.2021.v18.n4.a4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we are concentrated on demonstrating the Liouville type theorem for the stationary Magnetohydrodynamic equations in mixednorm Lebesgue spaces and weighted mixed-norm Lebesgue spaces. In particular, we show that, under some sufficient conditions in (weighted) mixed-norm Lebesgue spaces, the solution of stationary MHDs are identically zero. Precisely, we investigate solutions of MHDs that may decay to zero in different rates as $\lvert x \rvert \to \infty$ in different directions. In un-mixed norm case, the result recovers available results. With some additional geometric assumptions on the supports of solutions in weighted mixed-norm Lebesgue spaces, this work also provides several other important Liouville type theorems of solutions in weighted mixed-norm Lebesgue spaces.
加权混合范数Lebesgue空间中平稳磁流体动力学方程的Liouville型定理
本文主要讨论了混合范数Lebesgue空间和加权混合范数Lebesgue空间中平稳磁流体动力学方程的Liouville型定理。特别地,我们证明了在(加权)混合范数Lebesgue空间中的一些充分条件下,平稳mhd的解是同零的。确切地说,我们研究了可能在不同方向上以$\lvert x \rvert \to \infty$的不同速率衰减到零的mhd的解。在非混合范数情况下,结果恢复了可用结果。通过对加权混合范数Lebesgue空间中解的支撑的一些附加几何假设,本文还给出了加权混合范数Lebesgue空间中解的几个重要的Liouville型定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishes novel results in the areas of partial differential equations and dynamical systems in general, with priority given to dynamical system theory or dynamical aspects of partial differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信