A remark on the Strichartz inequality in one dimension

IF 1.1 3区 数学 Q2 MATHEMATICS, APPLIED
R. Frier, Shuanglin Shao
{"title":"A remark on the Strichartz inequality in one dimension","authors":"R. Frier, Shuanglin Shao","doi":"10.4310/dpde.2022.v19.n2.a4","DOIUrl":null,"url":null,"abstract":"In this paper, we study the extremal problem for the Strichartz inequality for the Schrödinger equation on R. We show that the solutions to the associated Euler-Lagrange equation are exponentially decaying in the Fourier space and thus can be extended to be complex analytic. Consequently we provide a new proof to the characterization of the extremal functions: the only extremals are Gaussian functions, which was investigated previously by Foschi [7] and Hundertmark-Zharnitsky [11].","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/dpde.2022.v19.n2.a4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we study the extremal problem for the Strichartz inequality for the Schrödinger equation on R. We show that the solutions to the associated Euler-Lagrange equation are exponentially decaying in the Fourier space and thus can be extended to be complex analytic. Consequently we provide a new proof to the characterization of the extremal functions: the only extremals are Gaussian functions, which was investigated previously by Foschi [7] and Hundertmark-Zharnitsky [11].
一维中strstrichartz不等式的一个注释
本文研究了R上Schrödinger方程的Strichartz不等式的极值问题。我们证明了相关的欧拉-拉格朗日方程的解在傅立叶空间中是指数衰减的,因此可以推广为复解析的。因此,我们为极值函数的刻画提供了一个新的证明:唯一的极值是高斯函数,这是Foschi[7]和Hundertmark-Zarnitsky[11]之前研究过的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishes novel results in the areas of partial differential equations and dynamical systems in general, with priority given to dynamical system theory or dynamical aspects of partial differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信