Dynamics of Partial Differential Equations最新文献

筛选
英文 中文
$W^{1,infty}$ instability of $H^1$-stable peakons in the Novikov equation Novikov方程中$H^1$稳定顶点的$W^{1,infty}$不稳定性
IF 1.3 3区 数学
Dynamics of Partial Differential Equations Pub Date : 2019-11-19 DOI: 10.4310/dpde.2021.v18.n3.a1
R. Chen, D. Pelinovsky
{"title":"$W^{1,infty}$ instability of $H^1$-stable peakons in the Novikov equation","authors":"R. Chen, D. Pelinovsky","doi":"10.4310/dpde.2021.v18.n3.a1","DOIUrl":"https://doi.org/10.4310/dpde.2021.v18.n3.a1","url":null,"abstract":"It is known from the previous works that the peakon solutions of the Novikov equation are orbitally and asymptotically stable in $H^1$. We prove, via the method of characteristics, that these peakon solutions are unstable under $W^{1,infty}$-perturbations. Moreover, we show that small initial $W^{1,infty}$-perturbations of the Novikov peakons can lead to the finite time blow-up of the corresponding solutions.","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2019-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47718680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Laplace Equation 拉普拉斯方程
IF 1.3 3区 数学
Dynamics of Partial Differential Equations Pub Date : 2019-06-23 DOI: 10.1142/9789811202247_0004
C. Ou
{"title":"Laplace Equation","authors":"C. Ou","doi":"10.1142/9789811202247_0004","DOIUrl":"https://doi.org/10.1142/9789811202247_0004","url":null,"abstract":"","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":"92 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83824462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FRONT MATTER 前页
IF 1.3 3区 数学
Dynamics of Partial Differential Equations Pub Date : 2019-06-23 DOI: 10.1142/9789811202247_fmatter
{"title":"FRONT MATTER","authors":"","doi":"10.1142/9789811202247_fmatter","DOIUrl":"https://doi.org/10.1142/9789811202247_fmatter","url":null,"abstract":"","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":"5 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88301941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hints and Solutions to Selected Exercises 选定练习的提示和解答
IF 1.3 3区 数学
Dynamics of Partial Differential Equations Pub Date : 2019-06-23 DOI: 10.1887/0750306521/b803b2
Rowan Garnier, John Taylor
{"title":"Hints and Solutions to Selected Exercises","authors":"Rowan Garnier, John Taylor","doi":"10.1887/0750306521/b803b2","DOIUrl":"https://doi.org/10.1887/0750306521/b803b2","url":null,"abstract":"","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":"119 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88378399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BACK MATTER 回到问题
IF 1.3 3区 数学
Dynamics of Partial Differential Equations Pub Date : 2019-06-23 DOI: 10.1142/9789811202247_bmatter
{"title":"BACK MATTER","authors":"","doi":"10.1142/9789811202247_bmatter","DOIUrl":"https://doi.org/10.1142/9789811202247_bmatter","url":null,"abstract":"","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":"52 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73575107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotic autonomy of kernel sections for Newton–Boussinesq equations on unbounded zonary domains 无界带域上Newton-Boussinesq方程核段的渐近自治
IF 1.3 3区 数学
Dynamics of Partial Differential Equations Pub Date : 2019-01-01 DOI: 10.4310/dpde.2019.v16.n3.a4
Renhai Wang, Yangrong Li
{"title":"Asymptotic autonomy of kernel sections for Newton–Boussinesq equations on unbounded zonary domains","authors":"Renhai Wang, Yangrong Li","doi":"10.4310/dpde.2019.v16.n3.a4","DOIUrl":"https://doi.org/10.4310/dpde.2019.v16.n3.a4","url":null,"abstract":"","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70426828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Stability of hyperbolic-parabolic mixed type equations 双曲-抛物混合型方程的稳定性
IF 1.3 3区 数学
Dynamics of Partial Differential Equations Pub Date : 2019-01-01 DOI: 10.4310/dpde.2019.v16.n3.a2
Huashui Zhan, Zhaosheng Feng
{"title":"Stability of hyperbolic-parabolic mixed type equations","authors":"Huashui Zhan, Zhaosheng Feng","doi":"10.4310/dpde.2019.v16.n3.a2","DOIUrl":"https://doi.org/10.4310/dpde.2019.v16.n3.a2","url":null,"abstract":"","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70426779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Long time behavior of the NLS-Szegő equation nls -塞格格方程的长时间行为
IF 1.3 3区 数学
Dynamics of Partial Differential Equations Pub Date : 2019-01-01 DOI: 10.4310/dpde.2019.v16.n4.a2
Ruoci Sun
{"title":"Long time behavior of the NLS-Szegő equation","authors":"Ruoci Sun","doi":"10.4310/dpde.2019.v16.n4.a2","DOIUrl":"https://doi.org/10.4310/dpde.2019.v16.n4.a2","url":null,"abstract":". We are interested in the influence of filtering the positive Fourier modes to the integrable non linear Schr¨odinger equation. Equivalently, we want to study the effect of dispersion added to the cubic Szeg˝o equation, leading to the NLS-Szeg˝o equation on the circle S 1 There are two sets of results in this paper. The first result concerns the long time Sobolev estimates for small data. The second set of results concerns the orbital stability of plane wave solutions. Some instability results are also obtained, leading to the wave turbulence phenomenon.","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70426358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
On global attractor of 3D Klein–Gordon equation with several concentrated nonlinearities 若干非线性集中的三维Klein-Gordon方程的全局吸引子
IF 1.3 3区 数学
Dynamics of Partial Differential Equations Pub Date : 2019-01-01 DOI: 10.4310/DPDE.2019.V16.N2.A1
E. Kopylova, A. Komech
{"title":"On global attractor of 3D Klein–Gordon equation with several concentrated nonlinearities","authors":"E. Kopylova, A. Komech","doi":"10.4310/DPDE.2019.V16.N2.A1","DOIUrl":"https://doi.org/10.4310/DPDE.2019.V16.N2.A1","url":null,"abstract":". The global attraction is proved for solutions to 3D Klein-Gordon equation coupled to several nonlinear point oscillators. Our main result is a convergence of each finite energy solution to the set of all solitary waves as t → ±∞ . This attraction is caused by the nonlinear energy transfer from lower harmonics to the continuous spectrum and subsequent dispersion radiation. We justify this mechanism by the following strategy based on inflation of spectrum by the nonlinearity . We show that any omega-limit trajectory has the time-spectrum in the spectral gap [ − m,m ] and satisfies the original equation. Then the application of the Titchmarsh convolution theorem reduces the time-spectrum to a single harmonic ω ∈ [ − m,m ].","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70426719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Predual forms, harmonic maps and liquid crystals of $(BMO-Q)$ and $(BMO-Q)^{-1}$ $(BMO-Q)$和$(BMO-Q)^{-1}$的前对偶形式、谐波映射和液晶
IF 1.3 3区 数学
Dynamics of Partial Differential Equations Pub Date : 2019-01-01 DOI: 10.4310/dpde.2019.v16.n4.a3
J. Xiao, Junjie Zhang
{"title":"Predual forms, harmonic maps and liquid crystals of $(BMO-Q)$ and $(BMO-Q)^{-1}$","authors":"J. Xiao, Junjie Zhang","doi":"10.4310/dpde.2019.v16.n4.a3","DOIUrl":"https://doi.org/10.4310/dpde.2019.v16.n4.a3","url":null,"abstract":"","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":"67 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70426372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信