Long time behavior of the NLS-Szegő equation

IF 1.1 3区 数学 Q2 MATHEMATICS, APPLIED
Ruoci Sun
{"title":"Long time behavior of the NLS-Szegő equation","authors":"Ruoci Sun","doi":"10.4310/dpde.2019.v16.n4.a2","DOIUrl":null,"url":null,"abstract":". We are interested in the influence of filtering the positive Fourier modes to the integrable non linear Schr¨odinger equation. Equivalently, we want to study the effect of dispersion added to the cubic Szeg˝o equation, leading to the NLS-Szeg˝o equation on the circle S 1 There are two sets of results in this paper. The first result concerns the long time Sobolev estimates for small data. The second set of results concerns the orbital stability of plane wave solutions. Some instability results are also obtained, leading to the wave turbulence phenomenon.","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/dpde.2019.v16.n4.a2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

Abstract

. We are interested in the influence of filtering the positive Fourier modes to the integrable non linear Schr¨odinger equation. Equivalently, we want to study the effect of dispersion added to the cubic Szeg˝o equation, leading to the NLS-Szeg˝o equation on the circle S 1 There are two sets of results in this paper. The first result concerns the long time Sobolev estimates for small data. The second set of results concerns the orbital stability of plane wave solutions. Some instability results are also obtained, leading to the wave turbulence phenomenon.
nls -塞格格方程的长时间行为
. 我们感兴趣的是正傅立叶模滤波对可积非线性薛定谔方程的影响。同样地,我们想研究色散对三次Szeg“o”方程的影响,从而得到NLS-Szeg“o”方程对圆s1的影响。第一个结果与Sobolev对小数据的长时间估计有关。第二组结果涉及平面波解的轨道稳定性。也得到了一些不稳定的结果,导致波浪湍流现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishes novel results in the areas of partial differential equations and dynamical systems in general, with priority given to dynamical system theory or dynamical aspects of partial differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信