$W^{1,\infty}$ instability of $H^1$-stable peakons in the Novikov equation

IF 1.1 3区 数学 Q2 MATHEMATICS, APPLIED
R. Chen, D. Pelinovsky
{"title":"$W^{1,\\infty}$ instability of $H^1$-stable peakons in the Novikov equation","authors":"R. Chen, D. Pelinovsky","doi":"10.4310/dpde.2021.v18.n3.a1","DOIUrl":null,"url":null,"abstract":"It is known from the previous works that the peakon solutions of the Novikov equation are orbitally and asymptotically stable in $H^1$. We prove, via the method of characteristics, that these peakon solutions are unstable under $W^{1,\\infty}$-perturbations. Moreover, we show that small initial $W^{1,\\infty}$-perturbations of the Novikov peakons can lead to the finite time blow-up of the corresponding solutions.","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2019-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/dpde.2021.v18.n3.a1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 6

Abstract

It is known from the previous works that the peakon solutions of the Novikov equation are orbitally and asymptotically stable in $H^1$. We prove, via the method of characteristics, that these peakon solutions are unstable under $W^{1,\infty}$-perturbations. Moreover, we show that small initial $W^{1,\infty}$-perturbations of the Novikov peakons can lead to the finite time blow-up of the corresponding solutions.
Novikov方程中$H^1$稳定顶点的$W^{1,\infty}$不稳定性
从以前的工作中可以知道,Novikov方程的peakon解在$H^1$中是轨道渐近稳定的。我们用特征方法证明了这些peakon解在$W^{1,\infty}$扰动下是不稳定的。此外,我们证明了Novikov peakons的小的初始$W^{1,\infty}$扰动可以导致相应解的有限时间爆破。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishes novel results in the areas of partial differential equations and dynamical systems in general, with priority given to dynamical system theory or dynamical aspects of partial differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信