Expert Reviews in Molecular Medicine最新文献

筛选
英文 中文
Dual role of glycans and binding receptors in pathogenesis of enveloped viruses (by mainly focusing on two recent pandemics). 聚糖和结合受体在包膜病毒发病机制中的双重作用(主要关注最近的两次大流行)。
IF 6.2 2区 医学
Expert Reviews in Molecular Medicine Pub Date : 2023-05-10 DOI: 10.1017/erm.2023.12
Fatemeh Pourrajab, Mohamad Reza Zare-Khormizi
{"title":"Dual role of glycans and binding receptors in pathogenesis of enveloped viruses (by mainly focusing on two recent pandemics).","authors":"Fatemeh Pourrajab,&nbsp;Mohamad Reza Zare-Khormizi","doi":"10.1017/erm.2023.12","DOIUrl":"https://doi.org/10.1017/erm.2023.12","url":null,"abstract":"<p><p>A period of about a decade has been estimated to pass for the emergence of a new infectious strain of a virus that may lead to the occurrence of a pandemic one. It is now suggested that the variants of the 1918 H1N1 and coronavirus disease-19 pandemics could have existed in humans after the initial cross-species introduction to humans and underwent multiple low-level seasonal epidemics before the occurrence of their outbreaks. They share similarities in the continuation, widespreadness due to high transmissibility, high fatality rate and clinical symptoms. They are assumed to share a similar principle of a zoonotic source and a cross-species pathway for transmission. They show some similarities in their pathogenesis with other enveloped viruses: Severe Acute Respiratory Syndrome Coronavirus-1 (SARS-CoV-1), Middle East respiratory syndrome coronavirus (MERS-CoV), human immunodeficiency virus, Ebola, Lassa and measles viruses. The highly pathogenic nature of these viruses and their genetic variants may depend on their binding affinity for host cell receptors, whereby they efficiently circumvent or block host cell immune responses triggered by cytokines (interferon). High transmission rates and viral pathogenicity are attributed to glycan moieties that facilitate virus binding to host multiple receptors and cell entry, thereby helping viruses to evade immune recognition and response. Also, mucosa glycotopes are a matter of concern that play as primary sites for virus attachment and body entry. Finding general lectins or ligands that block the viral-host receptors interaction or identifying individual glycotopes is the therapeutic and prognosis topic that demands the main focus.</p>","PeriodicalId":50462,"journal":{"name":"Expert Reviews in Molecular Medicine","volume":"25 ","pages":"e19"},"PeriodicalIF":6.2,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10002811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New perspective on DNA response pathway (DDR) in glioblastoma, focus on classic biomarkers and emerging roles of ncRNAs. 胶质母细胞瘤DNA反应通路(DDR)的新视角,重点关注经典生物标志物和ncrna的新作用。
IF 6.2 2区 医学
Expert Reviews in Molecular Medicine Pub Date : 2023-05-08 DOI: 10.1017/erm.2023.10
Bianca Oana Pirlog, Silvina Ilut, Radu Pirlog, Paul Chiroi, Andreea Nutu, Delia Ioana Radutiu, George Daniel Cuc, Ioana Berindan-Neagoe, Seyed Fazel Nabavi, Rosanna Filosa, Seyed Mohammad Nabavi
{"title":"New perspective on DNA response pathway (DDR) in glioblastoma, focus on classic biomarkers and emerging roles of ncRNAs.","authors":"Bianca Oana Pirlog,&nbsp;Silvina Ilut,&nbsp;Radu Pirlog,&nbsp;Paul Chiroi,&nbsp;Andreea Nutu,&nbsp;Delia Ioana Radutiu,&nbsp;George Daniel Cuc,&nbsp;Ioana Berindan-Neagoe,&nbsp;Seyed Fazel Nabavi,&nbsp;Rosanna Filosa,&nbsp;Seyed Mohammad Nabavi","doi":"10.1017/erm.2023.10","DOIUrl":"https://doi.org/10.1017/erm.2023.10","url":null,"abstract":"<p><strong>Background: </strong>Glioblastoma (GBM) is the most frequent type of primary brain cancer, having a median survival of only 15 months. The current standard of care includes a combination of surgery, radiotherapy (RT) and chemotherapy with temozolomide, but with limited results. Moreover, multiple studies have shown that tumour relapse and resistance to classic therapeutic approaches are common events that occur in the majority of patients, and eventually leading to death. New approaches to better understand the intricated tumour biology involved in GBM are needed in order to develop personalised treatment approaches. Advances in cancer biology have widen our understanding over the GBM genome and allowing a better classification of these tumours based on their molecular profile.</p><p><strong>Methods: </strong>A new targeted therapeutic approach that is currently investigated in multiple clinical trials in GBM is represented by molecules that target various defects in the DNA damage repair (DDR) pathway, a mechanism activated by endogenous and exogenous factors that induce alteration of DNA, and is involved for the development of chemotherapy and RT resistance. This intricate pathway is regulated by p53, two important kinases ATR and ATM and non-coding RNAs including microRNAs, long-non-coding RNAs and circular RNAs that regulate the expression of all the proteins involved in the pathway.</p><p><strong>Results: </strong>Currently, the most studied DDR inhibitors are represented by PARP inhibitors (PARPi) with important results in ovarian and breast cancer. PARPi are a class of tumour agnostic drugs that showed their efficacy also in other localisations such as colon and prostate tumours that have a molecular signature associated with genomic instability. These inhibitors induce the accumulation of intracellular DNA damage, cell cycle arrest, mitotic catastrophe and apoptosis.</p><p><strong>Conclusions: </strong>This study aims to provide an integrated image of the DDR pathway in glioblastoma under physiological and treatment pressure with a focus of the regulatory roles of ncRNAs. The DDR inhibitors are emerging as an important new therapeutic approach for tumours with genomic instability and alterations in DDR pathways. The first clinical trials with PARPi in GBM are currently ongoing and will be presented in the article. Moreover, we consider that by incorporating the regulatory network in the DDR pathway in GBM we can fill the missing gaps that limited previous attempts to effectively target it in brain tumours. An overview of the importance of ncRNAs in GBM and DDR physiology and how they are interconnected is presented.</p>","PeriodicalId":50462,"journal":{"name":"Expert Reviews in Molecular Medicine","volume":"25 ","pages":"e18"},"PeriodicalIF":6.2,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9629598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Current updates on arrhythmia within Timothy syndrome: genetics, mechanisms and therapeutics. 蒂莫西综合征心律失常的最新进展:遗传学、机制和治疗。
IF 6.2 2区 医学
Expert Reviews in Molecular Medicine Pub Date : 2023-05-03 DOI: 10.1017/erm.2023.11
Congshan Jiang, Yanmin Zhang
{"title":"Current updates on arrhythmia within Timothy syndrome: genetics, mechanisms and therapeutics.","authors":"Congshan Jiang,&nbsp;Yanmin Zhang","doi":"10.1017/erm.2023.11","DOIUrl":"https://doi.org/10.1017/erm.2023.11","url":null,"abstract":"<p><p>Timothy syndrome (TS), characterised by multiple system malfunction especially the prolonged corrected QT interval and synchronised appearance of hand/foot syndactyly, is an extremely rare disease affecting early life with devastating arrhythmia. In this work, firstly, the various mutations in causative gene <i>CACNA1C</i> encoding cardiac L-type voltage-gated calcium channel (LTCC), regard with the genetic pathogeny and nomenclature of TS are reviewed. Secondly, the expression profile and function of <i>CACNA1C</i> gene encoding Ca<sub>v</sub>1.2 proteins, and its gain-of-function mutation in TS leading to multiple organ disease phenotypes especially arrhythmia are discussed. More importantly, we focus on the altered molecular mechanism underlying arrhythmia in TS, and discuss about how LTCC malfunction in TS can cause disorganised calcium handling with excessive intracellular calcium and its triggered dysregulated excitation-transcription coupling. In addition, current therapeutics for TS cardiac phenotypes including LTCC blockers, beta-adrenergic blocking agents, sodium channel blocker, multichannel inhibitors and pacemakers are summarised. Eventually, the research strategy using patient-specific induced pluripotent stem cells is recommended as one of the promising future directions for developing therapeutic approaches. This review updates our understanding on the research progress and future avenues to study the genetics and molecular mechanism underlying the pathogenesis of devastating arrhythmia within TS, and provides novel insights for developing therapeutic measures.</p>","PeriodicalId":50462,"journal":{"name":"Expert Reviews in Molecular Medicine","volume":"25 ","pages":"e17"},"PeriodicalIF":6.2,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10407238/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10334464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting N-cadherin (CDH2) and the malignant bone marrow microenvironment in acute leukaemia. 靶向n -钙粘蛋白(CDH2)与急性白血病恶性骨髓微环境的关系。
IF 6.2 2区 医学
Expert Reviews in Molecular Medicine Pub Date : 2023-05-03 DOI: 10.1017/erm.2023.13
Jessica Parker, Sean Hockney, Orest W Blaschuk, Deepali Pal
{"title":"Targeting N-cadherin (CDH2) and the malignant bone marrow microenvironment in acute leukaemia.","authors":"Jessica Parker,&nbsp;Sean Hockney,&nbsp;Orest W Blaschuk,&nbsp;Deepali Pal","doi":"10.1017/erm.2023.13","DOIUrl":"https://doi.org/10.1017/erm.2023.13","url":null,"abstract":"<p><p>This review discusses current research on acute paediatric leukaemia, the leukaemic bone marrow (BM) microenvironment and recently discovered therapeutic opportunities to target leukaemia-niche interactions. The tumour microenvironment plays an integral role in conferring treatment resistance to leukaemia cells, this poses as a key clinical challenge that hinders management of this disease. Here we focus on the role of the cell adhesion molecule N-cadherin (CDH2) within the malignant BM microenvironment and associated signalling pathways that may bear promise as therapeutic targets. Additionally, we discuss microenvironment-driven treatment resistance and relapse, and elaborate the role of CDH2-mediated cancer cell protection from chemotherapy. Finally, we review emerging therapeutic approaches that directly target CDH2-mediated adhesive interactions between the BM cells and leukaemia cells.</p>","PeriodicalId":50462,"journal":{"name":"Expert Reviews in Molecular Medicine","volume":"25 ","pages":"e16"},"PeriodicalIF":6.2,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10407222/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10317925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
25 years of ERMM. 25年的ERMM。
IF 6.2 2区 医学
Expert Reviews in Molecular Medicine Pub Date : 2023-04-18 DOI: 10.1017/erm.2023.8
Nicola Curtin
{"title":"25 years of <i>ERMM</i>.","authors":"Nicola Curtin","doi":"10.1017/erm.2023.8","DOIUrl":"https://doi.org/10.1017/erm.2023.8","url":null,"abstract":"","PeriodicalId":50462,"journal":{"name":"Expert Reviews in Molecular Medicine","volume":"25 ","pages":"e12"},"PeriodicalIF":6.2,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10407220/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10317905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fusobacterium nucleatum: a novel immune modulator in breast cancer? 核梭杆菌:乳腺癌中一种新的免疫调节剂?
IF 6.2 2区 医学
Expert Reviews in Molecular Medicine Pub Date : 2023-04-03 DOI: 10.1017/erm.2023.9
Alexa Little, Mark Tangney, Michael M Tunney, Niamh E Buckley
{"title":"<i>Fusobacterium nucleatum</i>: a novel immune modulator in breast cancer?","authors":"Alexa Little,&nbsp;Mark Tangney,&nbsp;Michael M Tunney,&nbsp;Niamh E Buckley","doi":"10.1017/erm.2023.9","DOIUrl":"https://doi.org/10.1017/erm.2023.9","url":null,"abstract":"<p><p>Breast cancer was the most commonly diagnosed cancer worldwide in 2020. Greater understanding of the factors which promote tumour progression, metastatic development and therapeutic resistance is needed. In recent years, a distinct microbiome has been detected in the breast, a site previously thought to be sterile. Here, we review the clinical and molecular relevance of the oral anaerobic bacterium <i>Fusobacterium nucleatum</i> in breast cancer. <i>F. nucleatum</i> is enriched in breast tumour tissue compared with matched healthy tissue and has been shown to promote mammary tumour growth and metastatic progression in mouse models. Current literature suggests that <i>F. nucleatum</i> modulates immune escape and inflammation within the tissue microenvironment, two well-defined hallmarks of cancer. Furthermore, the microbiome, and <i>F. nucleatum</i> specifically, has been shown to affect patient response to therapy including immune checkpoint inhibitors. These findings highlight areas of future research needed to better understand the influence of <i>F. nucleatum</i> in the development and treatment of breast cancer.</p>","PeriodicalId":50462,"journal":{"name":"Expert Reviews in Molecular Medicine","volume":"25 ","pages":"e15"},"PeriodicalIF":6.2,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10407221/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10016299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Autophagic mechanisms in longevity intervention: role of natural active compounds. 自噬机制在长寿干预:天然活性化合物的作用。
IF 6.2 2区 医学
Expert Reviews in Molecular Medicine Pub Date : 2023-03-30 DOI: 10.1017/erm.2023.5
Kevser Taban Akça, İlknur Çınar Ayan, Sümeyra Çetinkaya, Ece Miser Salihoğlu, İpek Süntar
{"title":"Autophagic mechanisms in longevity intervention: role of natural active compounds.","authors":"Kevser Taban Akça,&nbsp;İlknur Çınar Ayan,&nbsp;Sümeyra Çetinkaya,&nbsp;Ece Miser Salihoğlu,&nbsp;İpek Süntar","doi":"10.1017/erm.2023.5","DOIUrl":"https://doi.org/10.1017/erm.2023.5","url":null,"abstract":"<p><p>The term 'autophagy' literally translates to 'self-eating' and alterations to autophagy have been identified as one of the several molecular changes that occur with aging in a variety of species. Autophagy and aging, have a complicated and multifaceted relationship that has recently come to light thanks to breakthroughs in our understanding of the various substrates of autophagy on tissue homoeostasis. Several studies have been conducted to reveal the relationship between autophagy and age-related diseases. The present review looks at a few new aspects of autophagy and speculates on how they might be connected to both aging and the onset and progression of disease. Additionally, we go over the most recent preclinical data supporting the use of autophagy modulators as age-related illnesses including cancer, cardiovascular and neurodegenerative diseases, and metabolic dysfunction. It is crucial to discover important targets in the autophagy pathway in order to create innovative therapies that effectively target autophagy. Natural products have pharmacological properties that can be therapeutically advantageous for the treatment of several diseases and they also serve as valuable sources of inspiration for the development of possible new small-molecule drugs. Indeed, recent scientific studies have shown that several natural products including alkaloids, terpenoids, steroids, and phenolics, have the ability to alter a number of important autophagic signalling pathways and exert therapeutic effects, thus, a wide range of potential targets in various stages of autophagy have been discovered. In this review, we summarised the naturally occurring active compounds that may control the autophagic signalling pathways.</p>","PeriodicalId":50462,"journal":{"name":"Expert Reviews in Molecular Medicine","volume":"25 ","pages":"e13"},"PeriodicalIF":6.2,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10407225/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9953628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MicroRNAs in cancer metastasis: biological and therapeutic implications. microrna在癌症转移中的生物学和治疗意义。
IF 6.2 2区 医学
Expert Reviews in Molecular Medicine Pub Date : 2023-03-17 DOI: 10.1017/erm.2023.7
Marie Sell, Charmaine A Ramlogan-Steel, Jason C Steel, Bijay P Dhungel
{"title":"MicroRNAs in cancer metastasis: biological and therapeutic implications.","authors":"Marie Sell,&nbsp;Charmaine A Ramlogan-Steel,&nbsp;Jason C Steel,&nbsp;Bijay P Dhungel","doi":"10.1017/erm.2023.7","DOIUrl":"https://doi.org/10.1017/erm.2023.7","url":null,"abstract":"<p><p>Cancer metastasis is the primary cause of cancer-related deaths. The seeding of primary tumours at a secondary site is a highly inefficient process requiring substantial alterations in the genetic architecture of cancer cells. These alterations include significant changes in global gene expression patterns. MicroRNAs are small, non-protein coding RNAs which play a central role in regulating gene expression. Here, we focus on microRNA determinants of cancer metastasis and examine microRNA dysregulation in metastatic cancer cells. We dissect the metastatic process in a step-wise manner and summarise the involvement of microRNAs at each step. We also discuss the advantages and limitations of different microRNA-based strategies that have been used to target metastasis in pre-clinical models. Finally, we highlight current clinical trials that use microRNA-based therapies to target advanced or metastatic tumours.</p>","PeriodicalId":50462,"journal":{"name":"Expert Reviews in Molecular Medicine","volume":"25 ","pages":"e14"},"PeriodicalIF":6.2,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10407223/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9964864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Telomerase inhibition in malignant gliomas: a systematic review. 端粒酶抑制在恶性胶质瘤中的作用:一项系统综述。
IF 6.2 2区 医学
Expert Reviews in Molecular Medicine Pub Date : 2023-03-15 DOI: 10.1017/erm.2023.6
Quintino Giorgio D'Alessandris, Marco Battistelli, Giovanni Pennisi, Martina Offi, Maurizio Martini, Tonia Cenci, Maria Laura Falchetti, Liverana Lauretti, Alessandro Olivi, Roberto Pallini, Nicola Montano
{"title":"Telomerase inhibition in malignant gliomas: a systematic review.","authors":"Quintino Giorgio D'Alessandris,&nbsp;Marco Battistelli,&nbsp;Giovanni Pennisi,&nbsp;Martina Offi,&nbsp;Maurizio Martini,&nbsp;Tonia Cenci,&nbsp;Maria Laura Falchetti,&nbsp;Liverana Lauretti,&nbsp;Alessandro Olivi,&nbsp;Roberto Pallini,&nbsp;Nicola Montano","doi":"10.1017/erm.2023.6","DOIUrl":"https://doi.org/10.1017/erm.2023.6","url":null,"abstract":"<p><p>Glioblastoma (GBM) is the most frequent adult malignant brain tumour and despite different therapeutic efforts, the median overall survival still ranges from 14 to 18 months. Thus, new therapeutic strategies are urgently needed. However, the identification of cancer-specific targets is particularly challenging in GBM, due to the high heterogeneity of this tumour in terms of histopathological, molecular, genetic and epigenetic features. Telomerase reactivation is a hallmark of malignant glioma. An activating mutation of the hTERT gene, encoding for the active subunit of telomerase, is one of the molecular criteria to establish a diagnosis of GBM, IDH-wildtype, in the 2021 WHO classification of central nervous system tumours. Telomerase inhibition therefore represents, at least theoretically, a promising strategy for GBM therapy: pharmacological compounds, as well as direct gene expression modulation therapies, have been successfully employed in <i>in vitro</i> and <i>in vivo</i> settings. Unfortunately, the clinical applications of telomerase inhibition in GBM are currently scarce. The aim of the present systematic review is to provide an up-to-date report on the studies investigating telomerase inhibition as a therapeutic strategy for malignant glioma in order to foster the future translational and clinical research on this topic.</p>","PeriodicalId":50462,"journal":{"name":"Expert Reviews in Molecular Medicine","volume":"25 ","pages":"e10"},"PeriodicalIF":6.2,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9292208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Identity matters: cancer stem cells and tumour plasticity in head and neck squamous cell carcinoma. 身份问题:头颈部鳞状细胞癌的癌症干细胞和肿瘤可塑性。
IF 6.2 2区 医学
Expert Reviews in Molecular Medicine Pub Date : 2023-02-06 DOI: 10.1017/erm.2023.4
Abdelhakim Salem, Tuula Salo
{"title":"Identity matters: cancer stem cells and tumour plasticity in head and neck squamous cell carcinoma.","authors":"Abdelhakim Salem,&nbsp;Tuula Salo","doi":"10.1017/erm.2023.4","DOIUrl":"https://doi.org/10.1017/erm.2023.4","url":null,"abstract":"<p><p>Head and neck squamous cell carcinoma (HNSCC) represents frequent yet aggressive tumours that encompass complex ecosystems of stromal and neoplastic components including a dynamic population of cancer stem cells (CSCs). Recently, research in the field of CSCs has gained increased momentum owing in part to their role in tumourigenicity, metastasis, therapy resistance and relapse. We provide herein a comprehensive assessment of the latest progress in comprehending CSC plasticity, including newly discovered influencing factors and their possible application in HNSCC. We further discuss the dynamic interplay of CSCs within tumour microenvironment considering our evolving appreciation of the contribution of oral microbiota and the pressing need for relevant models depicting their features. In sum, CSCs and tumour plasticity represent an exciting and expanding battleground with great implications for cancer therapy that are only beginning to be appreciated in head and neck oncology.</p>","PeriodicalId":50462,"journal":{"name":"Expert Reviews in Molecular Medicine","volume":"25 ","pages":"e8"},"PeriodicalIF":6.2,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9483145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信