Finite Fields and Their Applications最新文献

筛选
英文 中文
Symplectic self-orthogonal and linear complementary dual codes from the Plotkin sum construction 从普罗特金和构造看交映自正交和线性互补对偶码
IF 1 3区 数学
Finite Fields and Their Applications Pub Date : 2024-04-12 DOI: 10.1016/j.ffa.2024.102425
Shixin Zhu , Yang Li , Shitao Li
{"title":"Symplectic self-orthogonal and linear complementary dual codes from the Plotkin sum construction","authors":"Shixin Zhu ,&nbsp;Yang Li ,&nbsp;Shitao Li","doi":"10.1016/j.ffa.2024.102425","DOIUrl":"https://doi.org/10.1016/j.ffa.2024.102425","url":null,"abstract":"<div><p>In this work, we propose two criteria for linear codes obtained from the Plotkin sum construction being symplectic self-orthogonal (SO) and linear complementary dual (LCD). As specific constructions, several classes of symplectic SO codes with good parameters including symplectic maximum distance separable codes are derived via <em>ℓ</em>-intersection pairs of linear codes and generalized Reed-Muller codes. Also symplectic LCD codes are constructed from general linear codes. Furthermore, we obtain some binary symplectic LCD codes, which are equivalent to quaternary trace Hermitian additive complementary dual codes that outperform the best-known quaternary Hermitian LCD codes reported in the literature. In addition, we prove that symplectic SO and LCD codes obtained in these ways are asymptotically good.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"96 ","pages":"Article 102425"},"PeriodicalIF":1.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140549245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Additive one-rank hull codes over finite fields 有限域上的加性一阶船体码
IF 1 3区 数学
Finite Fields and Their Applications Pub Date : 2024-04-12 DOI: 10.1016/j.ffa.2024.102426
Astha Agrawal, R.K. Sharma
{"title":"Additive one-rank hull codes over finite fields","authors":"Astha Agrawal,&nbsp;R.K. Sharma","doi":"10.1016/j.ffa.2024.102426","DOIUrl":"https://doi.org/10.1016/j.ffa.2024.102426","url":null,"abstract":"<div><p>This article explores additive codes with one-rank hull, offering key insights and constructions. The article introduces a novel approach to finding one-rank hull codes over finite fields by establishing a connection between self-orthogonal elements and solutions of quadratic forms. It also provides a precise count of self-orthogonal elements for any duality over the finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, particularly odd primes. Additionally, construction methods for small rank hull codes are introduced. The highest possible minimum distance among additive one-rank hull codes is denoted by <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mo>[</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>]</mo></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>e</mi></mrow></msup><mo>,</mo><mi>M</mi></mrow></msub></math></span>. The value of <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mo>[</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>]</mo></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>e</mi></mrow></msup><mo>,</mo><mi>M</mi></mrow></msub></math></span> for <span><math><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span> and <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span> with respect to any duality <em>M</em> over any finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>e</mi></mrow></msup></mrow></msub></math></span> is determined. Furthermore, the new quaternary one-rank hull codes are identified over non-symmetric dualities with better parameters than symmetric ones.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"96 ","pages":"Article 102426"},"PeriodicalIF":1.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140546130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Well-covered unitary Cayley graphs of matrix rings over finite fields and applications 有限域上矩阵环的井盖单元 Cayley 图及其应用
IF 1 3区 数学
Finite Fields and Their Applications Pub Date : 2024-04-09 DOI: 10.1016/j.ffa.2024.102428
Shahin Rahimi, Ashkan Nikseresht
{"title":"Well-covered unitary Cayley graphs of matrix rings over finite fields and applications","authors":"Shahin Rahimi,&nbsp;Ashkan Nikseresht","doi":"10.1016/j.ffa.2024.102428","DOIUrl":"https://doi.org/10.1016/j.ffa.2024.102428","url":null,"abstract":"<div><p>Suppose that <em>F</em> is a finite field and <span><math><mi>R</mi><mo>=</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span> is the ring of <em>n</em>-square matrices over <em>F</em>. Here we characterize when the Cayley graph of the additive group of <em>R</em> with respect to the set of invertible elements of <em>R</em>, called the unitary Cayley graph of <em>R</em>, is well-covered. Then we apply this to characterize all finite rings with identity whose unitary Cayley graph is well-covered or Cohen-Macaulay.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"96 ","pages":"Article 102428"},"PeriodicalIF":1.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140540450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Points of bounded height on projective spaces over global function fields via geometry of numbers 通过数几何学研究全局函数域投影空间上的有界高点
IF 1 3区 数学
Finite Fields and Their Applications Pub Date : 2024-04-08 DOI: 10.1016/j.ffa.2024.102417
Tristan Phillips
{"title":"Points of bounded height on projective spaces over global function fields via geometry of numbers","authors":"Tristan Phillips","doi":"10.1016/j.ffa.2024.102417","DOIUrl":"https://doi.org/10.1016/j.ffa.2024.102417","url":null,"abstract":"<div><p>We give a new proof of a result of DiPippo and Wan for counting points of bounded height on projective spaces over global function fields. The new proof adapts the geometry of numbers arguments used by Schanuel in the number field case.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"96 ","pages":"Article 102417"},"PeriodicalIF":1.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140536034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A correction and further improvements to the Chevalley-Warning theorems 对切瓦利-沃宁定理的修正和进一步改进
IF 1 3区 数学
Finite Fields and Their Applications Pub Date : 2024-04-08 DOI: 10.1016/j.ffa.2024.102427
David B. Leep , Rachel L. Petrik
{"title":"A correction and further improvements to the Chevalley-Warning theorems","authors":"David B. Leep ,&nbsp;Rachel L. Petrik","doi":"10.1016/j.ffa.2024.102427","DOIUrl":"https://doi.org/10.1016/j.ffa.2024.102427","url":null,"abstract":"<div><p>This paper corrects an error in the proof of Theorem 1.4 (3) of our earlier paper, <em>Further Improvements to the Chevalley-Warning Theorems</em>. The error originally appeared in Heath-Brown's paper, <em>On Chevalley-Warning Theorems</em>, which invalidates the proof of Theorem 2 (iii) in that paper. In this paper, we use a new method to give a correct proof of Theorem 1.4 (3). The correction in this paper also fixes the proof of Theorem 2 (iii) in Heath-Brown's paper. The proof in this paper provides slightly stronger estimates for some of the inequalities that were used in <em>Further Improvements to the Chevalley-Warning Theorems</em>.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"96 ","pages":"Article 102427"},"PeriodicalIF":1.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140536033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Arithmetic crosscorrelation of binary m-sequences with coprime periods 具有共同周期的二进制 m 序列的算术相关性
IF 1 3区 数学
Finite Fields and Their Applications Pub Date : 2024-04-06 DOI: 10.1016/j.ffa.2024.102424
Xiaoyan Jing , Keqin Feng
{"title":"Arithmetic crosscorrelation of binary m-sequences with coprime periods","authors":"Xiaoyan Jing ,&nbsp;Keqin Feng","doi":"10.1016/j.ffa.2024.102424","DOIUrl":"https://doi.org/10.1016/j.ffa.2024.102424","url":null,"abstract":"<div><p>The arithmetic crosscorrelation of binary <strong><em>m</em></strong>-sequences with coprime periods <span><math><msup><mrow><mn>2</mn></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>−</mo><mn>1</mn></math></span> and <span><math><msup><mrow><mn>2</mn></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>−</mo><mn>1</mn></math></span> (<span><math><mi>gcd</mi><mo>⁡</mo><mo>(</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>=</mo><mn>1</mn></math></span>) is determined. The result shows that the absolute value of arithmetic crosscorrelation of such binary <strong><em>m</em></strong>-sequences is not greater than <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>min</mi><mo>⁡</mo><mo>(</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></msup><mo>−</mo><mn>1</mn></math></span>.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"96 ","pages":"Article 102424"},"PeriodicalIF":1.0,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140349764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bivariate functions with low c-differential uniformity 具有低 c 差均匀性的二元函数
IF 1 3区 数学
Finite Fields and Their Applications Pub Date : 2024-04-06 DOI: 10.1016/j.ffa.2024.102422
Yanan Wu , Pantelimon Stănică , Chunlei Li , Nian Li , Xiangyong Zeng
{"title":"Bivariate functions with low c-differential uniformity","authors":"Yanan Wu ,&nbsp;Pantelimon Stănică ,&nbsp;Chunlei Li ,&nbsp;Nian Li ,&nbsp;Xiangyong Zeng","doi":"10.1016/j.ffa.2024.102422","DOIUrl":"https://doi.org/10.1016/j.ffa.2024.102422","url":null,"abstract":"<div><p>Starting with the multiplication of elements in <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> which is consistent with that over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>, where <em>q</em> is a prime power, via some identification of the two environments, we investigate the <em>c</em>-differential uniformity for bivariate functions <span><math><mi>F</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>=</mo><mo>(</mo><mi>G</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>,</mo><mi>H</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>)</mo></math></span>. By carefully choosing the functions <span><math><mi>G</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> and <span><math><mi>H</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span>, we present several constructions of bivariate functions with low <em>c</em>-differential uniformity, in particular, many P<em>c</em>N and AP<em>c</em>N functions can be produced from our constructions.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"96 ","pages":"Article 102422"},"PeriodicalIF":1.0,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140349767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hamming distances of constacyclic codes of length 7ps over Fpm Fpm 上长度为 7ps 的常环码的汉明距离
IF 1 3区 数学
Finite Fields and Their Applications Pub Date : 2024-04-05 DOI: 10.1016/j.ffa.2024.102420
Hai Q. Dinh , Hieu V. Ha , Nhan T.V. Nguyen , Nghia T.H. Tran , Thieu N. Vo
{"title":"Hamming distances of constacyclic codes of length 7ps over Fpm","authors":"Hai Q. Dinh ,&nbsp;Hieu V. Ha ,&nbsp;Nhan T.V. Nguyen ,&nbsp;Nghia T.H. Tran ,&nbsp;Thieu N. Vo","doi":"10.1016/j.ffa.2024.102420","DOIUrl":"https://doi.org/10.1016/j.ffa.2024.102420","url":null,"abstract":"<div><p>In this paper, we study constacyclic codes of length <span><math><mi>n</mi><mo>=</mo><mn>7</mn><msup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> over a finite field of characteristics <em>p</em>, where <span><math><mi>p</mi><mo>≠</mo><mn>7</mn></math></span> is an odd prime number and <em>s</em> a positive integer. The previous methods in the literature that were used to compute the Hamming distances of repeated-root constacyclic codes of lengths <span><math><mi>n</mi><msup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> with <span><math><mn>1</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><mn>6</mn></math></span> cannot be applied to completely determine the Hamming distances of those with <span><math><mi>n</mi><mo>=</mo><mn>7</mn></math></span>. This is due to the high computational complexity involved and the large number of unexpected intermediate results that arise during the computation. To overcome this challenge, we propose a computer-assisted method for determining the Hamming distances of simple-root constacyclic codes of length 7, and then utilize it to derive the Hamming distances of the repeated-root constacyclic codes of length <span><math><mn>7</mn><msup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span>. Our method is not only straightforward to implement but also efficient, making it applicable to these codes with larger values of <em>n</em> as well. In addition, all self-orthogonal, dual-containing, self-dual, MDS and AMDS codes among them will also be characterized.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"96 ","pages":"Article 102420"},"PeriodicalIF":1.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140350849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On trivial cyclically covering subspaces of Fqn 关于 Fqn 的琐碎循环覆盖子空间
IF 1 3区 数学
Finite Fields and Their Applications Pub Date : 2024-03-29 DOI: 10.1016/j.ffa.2024.102423
Jing Huang
{"title":"On trivial cyclically covering subspaces of Fqn","authors":"Jing Huang","doi":"10.1016/j.ffa.2024.102423","DOIUrl":"https://doi.org/10.1016/j.ffa.2024.102423","url":null,"abstract":"<div><p>A subspace of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> is called a cyclically covering subspace if for every vector of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>, operating a certain number of cyclic shifts on it, the resulting vector lies in the subspace. In this paper, we study the problem of under what conditions <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> is itself the only covering subspace of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>, symbolically, <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>, which is an open problem posed in Cameron et al. (2019) <span>[3]</span> and Aaronson et al. (2021) <span>[1]</span>. We apply the primitive idempotents of the cyclic group algebra to attack this problem; when <em>q</em> is relatively prime to <em>n</em>, we obtain a necessary and sufficient condition under which <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>, which completely answers the problem in this case. Our main result reveals that the problem can be fully reduced to that of determining the values of the trace function over finite fields. As consequences, we explicitly determine several infinitely families of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> which satisfy <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"96 ","pages":"Article 102423"},"PeriodicalIF":1.0,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140320786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constructing permutation polynomials from permutation polynomials of subfields 从子域的置换多项式构建置换多项式
IF 1 3区 数学
Finite Fields and Their Applications Pub Date : 2024-03-29 DOI: 10.1016/j.ffa.2024.102415
Lucas Reis , Qiang Wang
{"title":"Constructing permutation polynomials from permutation polynomials of subfields","authors":"Lucas Reis ,&nbsp;Qiang Wang","doi":"10.1016/j.ffa.2024.102415","DOIUrl":"https://doi.org/10.1016/j.ffa.2024.102415","url":null,"abstract":"&lt;div&gt;&lt;p&gt;In this paper we study the permutational property of polynomials of the form &lt;span&gt;&lt;math&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;⋅&lt;/mo&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; over the finite field &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; are &lt;em&gt;q&lt;/em&gt;-linearized polynomials and &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; satisfies a generic condition. We specialize in the case where &lt;span&gt;&lt;math&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; is the linearized &lt;em&gt;q&lt;/em&gt;-associate of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, &lt;em&gt;t&lt;/em&gt; is a divisor of &lt;em&gt;n&lt;/em&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; satisfies &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;. This unifies many recent explicit constructions and provides new explicit constructions of permutation polynomials and their inverses. Moreover, we introduce a new algorithmic method to produce many permutation polynomials of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; from permutations of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, by simply solving a system of independent equations of the form &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Tr&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;δ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, where the &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;'s are the coefficients of &lt;em&gt;f&lt;/em&gt;. In fact, the same method can be ","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"96 ","pages":"Article 102415"},"PeriodicalIF":1.0,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140320784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信