Finite Fields and Their Applications最新文献

筛选
英文 中文
On trivial cyclically covering subspaces of Fqn 关于 Fqn 的琐碎循环覆盖子空间
IF 1 3区 数学
Finite Fields and Their Applications Pub Date : 2024-03-29 DOI: 10.1016/j.ffa.2024.102423
Jing Huang
{"title":"On trivial cyclically covering subspaces of Fqn","authors":"Jing Huang","doi":"10.1016/j.ffa.2024.102423","DOIUrl":"https://doi.org/10.1016/j.ffa.2024.102423","url":null,"abstract":"<div><p>A subspace of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> is called a cyclically covering subspace if for every vector of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>, operating a certain number of cyclic shifts on it, the resulting vector lies in the subspace. In this paper, we study the problem of under what conditions <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> is itself the only covering subspace of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>, symbolically, <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>, which is an open problem posed in Cameron et al. (2019) <span>[3]</span> and Aaronson et al. (2021) <span>[1]</span>. We apply the primitive idempotents of the cyclic group algebra to attack this problem; when <em>q</em> is relatively prime to <em>n</em>, we obtain a necessary and sufficient condition under which <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>, which completely answers the problem in this case. Our main result reveals that the problem can be fully reduced to that of determining the values of the trace function over finite fields. As consequences, we explicitly determine several infinitely families of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> which satisfy <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140320786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constructing permutation polynomials from permutation polynomials of subfields 从子域的置换多项式构建置换多项式
IF 1 3区 数学
Finite Fields and Their Applications Pub Date : 2024-03-29 DOI: 10.1016/j.ffa.2024.102415
Lucas Reis , Qiang Wang
{"title":"Constructing permutation polynomials from permutation polynomials of subfields","authors":"Lucas Reis ,&nbsp;Qiang Wang","doi":"10.1016/j.ffa.2024.102415","DOIUrl":"https://doi.org/10.1016/j.ffa.2024.102415","url":null,"abstract":"<div><p>In this paper we study the permutational property of polynomials of the form <span><math><mi>f</mi><mo>(</mo><mi>L</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo><mo>+</mo><mi>k</mi><mo>(</mo><mi>L</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo><mo>⋅</mo><mi>M</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span> over the finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span>, where <span><math><mi>L</mi><mo>,</mo><mi>M</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span> are <em>q</em>-linearized polynomials and <span><math><mi>k</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span> satisfies a generic condition. We specialize in the case where <span><math><mi>L</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is the linearized <em>q</em>-associate of <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>a</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>t</mi></mrow></msup><mo>−</mo><mi>a</mi><mo>)</mo></math></span>, <em>t</em> is a divisor of <em>n</em> and <span><math><mi>a</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> satisfies <span><math><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi><mo>/</mo><mi>t</mi></mrow></msup><mo>=</mo><mn>1</mn></math></span>. This unifies many recent explicit constructions and provides new explicit constructions of permutation polynomials and their inverses. Moreover, we introduce a new algorithmic method to produce many permutation polynomials of <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> from permutations of <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>t</mi></mrow></msup></mrow></msub></math></span>, by simply solving a system of independent equations of the form <span><math><msub><mrow><mi>Tr</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>/</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>t</mi></mrow></msup></mrow></msub><mo>(</mo><msup><mrow><mi>δ</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msup><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>=</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, where the <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>'s are the coefficients of <em>f</em>. In fact, the same method can be ","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140320784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of the Cartier operator in coding theory 卡蒂埃算子在编码理论中的应用
IF 1 3区 数学
Finite Fields and Their Applications Pub Date : 2024-03-29 DOI: 10.1016/j.ffa.2024.102419
Vahid Nourozi
{"title":"Application of the Cartier operator in coding theory","authors":"Vahid Nourozi","doi":"10.1016/j.ffa.2024.102419","DOIUrl":"https://doi.org/10.1016/j.ffa.2024.102419","url":null,"abstract":"<div><p>The <em>a</em>-number is an invariant of the isomorphism class of the <em>p</em>-torsion group scheme. We use the Cartier operator on <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msup><mrow><mi>Ω</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>)</mo></math></span> to find a closed formula for the <em>a</em>-number of the form <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mi>v</mi><mo>(</mo><msup><mrow><mi>Y</mi></mrow><mrow><msqrt><mrow><mi>q</mi></mrow></msqrt></mrow></msup><mo>+</mo><mi>Y</mi><mo>−</mo><msup><mrow><mi>x</mi></mrow><mrow><mfrac><mrow><msqrt><mrow><mi>q</mi></mrow></msqrt><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>)</mo></math></span> where <span><math><mi>q</mi><mo>=</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> over the finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>. The application of the computed <em>a</em>-number in coding theory is illustrated by the relationship between the algebraic properties of the curve and the parameters of codes that are supported by it.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140320785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Private information retrieval from locally repairable databases with colluding servers 从有串通服务器的本地可修复数据库中检索私人信息
IF 1 3区 数学
Finite Fields and Their Applications Pub Date : 2024-03-28 DOI: 10.1016/j.ffa.2024.102421
Umberto Martínez-Peñas
{"title":"Private information retrieval from locally repairable databases with colluding servers","authors":"Umberto Martínez-Peñas","doi":"10.1016/j.ffa.2024.102421","DOIUrl":"https://doi.org/10.1016/j.ffa.2024.102421","url":null,"abstract":"<div><p>We consider information-theoretical private information retrieval (PIR) from a coded database with colluding servers. We target, for the first time, locally repairable storage codes (LRCs). We consider any number of local groups <em>g</em>, locality <em>r</em>, local distance <em>δ</em> and dimension <em>k</em>. Our main contribution is a PIR scheme for maximally recoverable (MR) LRCs based on linearized Reed–Solomon codes, which achieve the smallest field sizes among MR-LRCs for many parameter regimes. In our scheme, nodes are identified with codeword symbols and servers are identified with local groups of nodes. Only locally non-redundant information is downloaded from each server, that is, only <em>r</em> nodes (out of <span><math><mi>r</mi><mo>+</mo><mi>δ</mi><mo>−</mo><mn>1</mn></math></span>) are downloaded per server. The PIR scheme achieves the (download) rate <span><math><mi>R</mi><mo>=</mo><mo>(</mo><mi>N</mi><mo>−</mo><mi>k</mi><mo>−</mo><mi>r</mi><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mi>N</mi></math></span>, where <span><math><mi>N</mi><mo>=</mo><mi>g</mi><mi>r</mi></math></span> is the length of the MDS code obtained after removing the local parities, and for any <em>t</em> colluding servers such that <span><math><mi>k</mi><mo>+</mo><mi>r</mi><mi>t</mi><mo>≤</mo><mi>N</mi></math></span>. For an unbounded number of stored files, the obtained rate is strictly larger than those of known PIR schemes that work for any MDS code. Finally, the obtained PIR scheme can also be adapted when communication between the user and each server is performed via linear network coding, achieving the same rate as previous PIR schemes for this scenario but with polynomial finite field sizes, instead of exponential. Our rates are equal to those of PIR schemes for Reed–Solomon codes, but Reed–Solomon codes are incompatible with the MR-LRC property or linear network coding, thus our PIR scheme is less restrictive in its applications.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1071579724000601/pdfft?md5=0fe90fcdc546f6a24d87a8e7912affb8&pid=1-s2.0-S1071579724000601-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140320783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Primitive elements of finite fields Fqr avoiding affine hyperplanes for q = 4 and q = 5 q = 4 和 q = 5 时避免仿射超平面的有限域 Fqr 的基元
IF 1 3区 数学
Finite Fields and Their Applications Pub Date : 2024-03-26 DOI: 10.1016/j.ffa.2024.102416
Philipp A. Grzywaczyk , Arne Winterhof
{"title":"Primitive elements of finite fields Fqr avoiding affine hyperplanes for q = 4 and q = 5","authors":"Philipp A. Grzywaczyk ,&nbsp;Arne Winterhof","doi":"10.1016/j.ffa.2024.102416","DOIUrl":"https://doi.org/10.1016/j.ffa.2024.102416","url":null,"abstract":"<div><p>For a finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>r</mi></mrow></msup></mrow></msub></math></span> with fixed <em>q</em> and <em>r</em> sufficiently large, we prove the existence of a primitive element outside of a set of <em>r</em> many affine hyperplanes for <span><math><mi>q</mi><mo>=</mo><mn>4</mn></math></span> and <span><math><mi>q</mi><mo>=</mo><mn>5</mn></math></span>. This complements earlier results by Fernandes and Reis for <span><math><mi>q</mi><mo>≥</mo><mn>7</mn></math></span>. For <span><math><mi>q</mi><mo>=</mo><mn>3</mn></math></span> the analogous result can be derived from a very recent bound on character sums of Iyer and Shparlinski. For <span><math><mi>q</mi><mo>=</mo><mn>2</mn></math></span> the set consists only of a single element, and such a result is thus not possible.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1071579724000558/pdfft?md5=ec9767fa6acb2934aaa8e7ad60735c8c&pid=1-s2.0-S1071579724000558-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140290917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On permutation quadrinomials from Niho exponents in characteristic two 从特征二中的尼霍指数论 permutation quadrinomials from Niho exponents
IF 1 3区 数学
Finite Fields and Their Applications Pub Date : 2024-03-26 DOI: 10.1016/j.ffa.2024.102418
Vincenzo Pallozzi Lavorante
{"title":"On permutation quadrinomials from Niho exponents in characteristic two","authors":"Vincenzo Pallozzi Lavorante","doi":"10.1016/j.ffa.2024.102418","DOIUrl":"https://doi.org/10.1016/j.ffa.2024.102418","url":null,"abstract":"<div><p>Recently Zheng et al. <span>[18]</span> characterized the coefficients of <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>x</mi><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mn>1</mn></mrow></msup><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mn>1</mn></mrow></msup><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>3</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mn>1</mn></mrow></msup></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn><mi>m</mi></mrow></msup></mrow></msub></math></span> that lead <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> to be a permutation of <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn><mi>m</mi></mrow></msup></mrow></msub></math></span> for <span><math><mo>(</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo><mo>=</mo><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>)</mo></math></span>. They left open the question whether those conditions were also necessary. In this paper, we give a positive answer to that question, solving their conjecture.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140295913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Irreducibility properties of Carlitz' binomial coefficients for algebraic function fields 代数函数场的卡利茨二项式系数的不可逆性质
IF 1 3区 数学
Finite Fields and Their Applications Pub Date : 2024-03-26 DOI: 10.1016/j.ffa.2024.102413
Robert Tichy , Daniel Windisch
{"title":"Irreducibility properties of Carlitz' binomial coefficients for algebraic function fields","authors":"Robert Tichy ,&nbsp;Daniel Windisch","doi":"10.1016/j.ffa.2024.102413","DOIUrl":"https://doi.org/10.1016/j.ffa.2024.102413","url":null,"abstract":"<div><p>We study the class of univariate polynomials <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span>, introduced by Carlitz, with coefficients in the algebraic function field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span> over the finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> with <em>q</em> elements. It is implicit in the work of Carlitz that these polynomials form an <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>t</mi><mo>]</mo></math></span>-module basis of the ring <span><math><mi>Int</mi><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>t</mi><mo>]</mo><mo>)</mo><mo>=</mo><mo>{</mo><mi>f</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>[</mo><mi>X</mi><mo>]</mo><mo>|</mo><mi>f</mi><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>t</mi><mo>]</mo><mo>)</mo><mo>⊆</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>t</mi><mo>]</mo><mo>}</mo></math></span> of integer-valued polynomials on the polynomial ring <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>t</mi><mo>]</mo></math></span>. This stands in close analogy to the famous fact that a <span><math><mi>Z</mi></math></span>-module basis of the ring <span><math><mi>Int</mi><mo>(</mo><mi>Z</mi><mo>)</mo></math></span> is given by the binomial polynomials <span><math><mo>(</mo><mtable><mtr><mtd><mi>X</mi></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></math></span>.</p><p>We prove, for <span><math><mi>k</mi><mo>=</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span>, where <em>s</em> is a non-negative integer, that <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is irreducible in <span><math><mi>Int</mi><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>t</mi><mo>]</mo><mo>)</mo></math></span> and that it is even absolutely irreducible, that is, all of its powers <span><math><msubsup><mrow><mi>β</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>m</mi></mrow></msubsup></math></span> with <span><math><mi>m</mi><mo>&gt;</mo><mn>0</mn></math></span> factor uniquely as products of irreducible elements of this ring. As we show, this result is optimal in the sense that <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is not even irreducible if <em>k</em> is not a power of <em>q</em>.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1071579724000522/pdfft?md5=03cc03a1cb4e3126319ead5a88957a4f&pid=1-s2.0-S1071579724000522-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140290863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New classes of permutation trinomials of F22m F22m 的新类置换三项式
IF 1 3区 数学
Finite Fields and Their Applications Pub Date : 2024-03-26 DOI: 10.1016/j.ffa.2024.102414
Akshay Ankush Yadav , Indivar Gupta , Harshdeep Singh , Arvind Yadav
{"title":"New classes of permutation trinomials of F22m","authors":"Akshay Ankush Yadav ,&nbsp;Indivar Gupta ,&nbsp;Harshdeep Singh ,&nbsp;Arvind Yadav","doi":"10.1016/j.ffa.2024.102414","DOIUrl":"https://doi.org/10.1016/j.ffa.2024.102414","url":null,"abstract":"<div><p>In recent years, there have been a lot of research towards finding conditions under which the trinomial <span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>α</mi><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>β</mi><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>+</mo><mn>1</mn><mo>)</mo></math></span> permutes <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn><mi>m</mi></mrow></msup></mrow></msub></math></span> with <span><math><mi>α</mi><mo>&gt;</mo><mi>β</mi></math></span> and <em>r</em> being positive integers. The authors of <span>[6]</span>, <span>[10]</span>, <span>[24]</span> have determined these conditions when <span><math><mi>α</mi><mo>≤</mo><mn>5</mn></math></span> for certain values of <em>β</em> and <em>r</em>. In this paper, we work for <span><math><mi>α</mi><mo>=</mo><mn>6</mn></math></span> and determine four new classes of such permutation trinomials. Our contribution encompasses the investigation of these unexplored classes. Additionally, we analyze their quasi-multiplicative equivalence with already known permutation trinomials for <span><math><mi>m</mi><mo>≥</mo><mn>1</mn></math></span>. Through our research, we demonstrate that two of these determined classes are new, and for others, we explicitly compute the exponent for which they become equivalent.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140295912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plane curves with a large linear automorphism group in characteristic p 特性 p 中具有大线性自变群的平面曲线
IF 1 3区 数学
Finite Fields and Their Applications Pub Date : 2024-03-22 DOI: 10.1016/j.ffa.2024.102402
Herivelto Borges , Gábor Korchmáros , Pietro Speziali
{"title":"Plane curves with a large linear automorphism group in characteristic p","authors":"Herivelto Borges ,&nbsp;Gábor Korchmáros ,&nbsp;Pietro Speziali","doi":"10.1016/j.ffa.2024.102402","DOIUrl":"https://doi.org/10.1016/j.ffa.2024.102402","url":null,"abstract":"<div><p>Let <em>G</em> be a subgroup of the three dimensional projective group <span><math><mtext>PGL</mtext><mo>(</mo><mn>3</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> defined over a finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> of order <em>q</em>, viewed as a subgroup of <span><math><mtext>PGL</mtext><mo>(</mo><mn>3</mn><mo>,</mo><mi>K</mi><mo>)</mo></math></span> where <em>K</em> is an algebraic closure of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. For <span><math><mi>G</mi><mo>≅</mo><mtext>PGL</mtext><mo>(</mo><mn>3</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> and for the seven nonsporadic, maximal subgroups <em>G</em> of <span><math><mtext>PGL</mtext><mo>(</mo><mn>3</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>, we investigate the (projective, irreducible) plane curves defined over <em>K</em> that are left invariant by <em>G</em>. For each, we compute the minimum degree <span><math><mi>d</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of <em>G</em>-invariant curves, provide a classification of all <em>G</em>-invariant curves of degree <span><math><mi>d</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, and determine the first gap <span><math><mi>ε</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> in the spectrum of the degrees of all <em>G</em>-invariant curves. We show that the curves of degree <span><math><mi>d</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> belong to a pencil depending on <em>G</em>, unless they are uniquely determined by <em>G</em>. For most examples of plane curves left invariant by a large subgroup of <span><math><mtext>PGL</mtext><mo>(</mo><mn>3</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>, the whole automorphism group of the curve is linear, i.e., a subgroup of <span><math><mtext>PGL</mtext><mo>(</mo><mn>3</mn><mo>,</mo><mi>K</mi><mo>)</mo></math></span>. Although this appears to be a general behavior, we show that the opposite case can also occur for some irreducible plane curves, that is, the curve has a large group of linear automorphisms, but its full automorphism group is nonlinear.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140190950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On a class of permutation polynomials and their inverses 关于一类置换多项式及其倒数
IF 1 3区 数学
Finite Fields and Their Applications Pub Date : 2024-03-18 DOI: 10.1016/j.ffa.2024.102403
Ruikai Chen , Sihem Mesnager
{"title":"On a class of permutation polynomials and their inverses","authors":"Ruikai Chen ,&nbsp;Sihem Mesnager","doi":"10.1016/j.ffa.2024.102403","DOIUrl":"https://doi.org/10.1016/j.ffa.2024.102403","url":null,"abstract":"<div><p>We introduce a class of permutation polynomial over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> that can be written in the form <span><math><mfrac><mrow><mi>L</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi><mo>+</mo><mn>1</mn></mrow></msup></mrow></mfrac></math></span> or <span><math><mfrac><mrow><mi>L</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>x</mi></mrow></mfrac></math></span> for some <em>q</em>-linear polynomial <em>L</em> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span>. Specifically, we present those permutation polynomials explicitly as well as their inverses. In addition, more permutation polynomials can be derived in a more general form.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140145169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信