与Jacobi和有关的Gross-Koblitz公式和几乎循环矩阵

IF 1.2 3区 数学 Q1 MATHEMATICS
Hai-Liang Wu , Li-Yuan Wang
{"title":"与Jacobi和有关的Gross-Koblitz公式和几乎循环矩阵","authors":"Hai-Liang Wu ,&nbsp;Li-Yuan Wang","doi":"10.1016/j.ffa.2025.102581","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we mainly consider arithmetic properties of the cyclotomic matrix <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>[</mo><msub><mrow><mi>J</mi></mrow><mrow><mi>p</mi></mrow></msub><msup><mrow><mo>(</mo><msup><mrow><mi>χ</mi></mrow><mrow><mi>k</mi><mi>i</mi></mrow></msup><mo>,</mo><msup><mrow><mi>χ</mi></mrow><mrow><mi>k</mi><mi>j</mi></mrow></msup><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>]</mo></mrow><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>≤</mo><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>−</mo><mi>k</mi><mo>)</mo><mo>/</mo><mi>k</mi></mrow></msub></math></span>, where <em>p</em> is an odd prime, <span><math><mn>1</mn><mo>≤</mo><mi>k</mi><mo>&lt;</mo><mi>p</mi><mo>−</mo><mn>1</mn></math></span> is a divisor of <span><math><mi>p</mi><mo>−</mo><mn>1</mn></math></span>, <em>χ</em> is a generator of the group of all multiplicative characters of the finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><msup><mrow><mi>χ</mi></mrow><mrow><mi>k</mi><mi>i</mi></mrow></msup><mo>,</mo><msup><mrow><mi>χ</mi></mrow><mrow><mi>k</mi><mi>j</mi></mrow></msup><mo>)</mo></math></span> is Jacobi sum over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>. By using the Gross-Koblitz formula and some <em>p</em>-adic tools, we first prove that<span><span><span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>det</mi><mo>⁡</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>≡</mo><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mfrac><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>p</mi><mo>+</mo><mi>n</mi><mo>−</mo><mn>3</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><msup><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi><mo>!</mo></mrow></mfrac><mo>)</mo></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msup><mfrac><mrow><mn>1</mn></mrow><mrow><mo>(</mo><mn>2</mn><mi>k</mi><mo>)</mo><mo>!</mo></mrow></mfrac><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mi>p</mi><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><mi>p</mi><mo>−</mo><mn>1</mn><mo>=</mo><mi>k</mi><mi>n</mi></math></span>. By establishing some theories on almost circulant matrices, we show that<span><span><span><math><mi>det</mi><mo>⁡</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>=</mo><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mfrac><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>p</mi><mo>+</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><msup><mrow><mi>p</mi></mrow><mrow><mo>−</mo><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msup><msub><mrow><mi>a</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>.</mo></math></span></span></span> Here <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo></math></span> is the coefficient of <em>t</em> in the minimal polynomial of <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>y</mi><mo>∈</mo><msub><mrow><mi>U</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msub><mo>(</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>π</mi><mi>i</mi><mi>y</mi><mo>/</mo><mi>p</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is the set of all <em>k</em>-th roots of unity over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>. Also, for <span><math><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span> we obtain explicit expressions of <span><math><mi>det</mi><mo>⁡</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"103 ","pages":"Article 102581"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Gross-Koblitz formula and almost circulant matrices related to Jacobi sums\",\"authors\":\"Hai-Liang Wu ,&nbsp;Li-Yuan Wang\",\"doi\":\"10.1016/j.ffa.2025.102581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we mainly consider arithmetic properties of the cyclotomic matrix <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>[</mo><msub><mrow><mi>J</mi></mrow><mrow><mi>p</mi></mrow></msub><msup><mrow><mo>(</mo><msup><mrow><mi>χ</mi></mrow><mrow><mi>k</mi><mi>i</mi></mrow></msup><mo>,</mo><msup><mrow><mi>χ</mi></mrow><mrow><mi>k</mi><mi>j</mi></mrow></msup><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>]</mo></mrow><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>≤</mo><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>−</mo><mi>k</mi><mo>)</mo><mo>/</mo><mi>k</mi></mrow></msub></math></span>, where <em>p</em> is an odd prime, <span><math><mn>1</mn><mo>≤</mo><mi>k</mi><mo>&lt;</mo><mi>p</mi><mo>−</mo><mn>1</mn></math></span> is a divisor of <span><math><mi>p</mi><mo>−</mo><mn>1</mn></math></span>, <em>χ</em> is a generator of the group of all multiplicative characters of the finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><msup><mrow><mi>χ</mi></mrow><mrow><mi>k</mi><mi>i</mi></mrow></msup><mo>,</mo><msup><mrow><mi>χ</mi></mrow><mrow><mi>k</mi><mi>j</mi></mrow></msup><mo>)</mo></math></span> is Jacobi sum over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>. By using the Gross-Koblitz formula and some <em>p</em>-adic tools, we first prove that<span><span><span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>det</mi><mo>⁡</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>≡</mo><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mfrac><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>p</mi><mo>+</mo><mi>n</mi><mo>−</mo><mn>3</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><msup><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi><mo>!</mo></mrow></mfrac><mo>)</mo></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msup><mfrac><mrow><mn>1</mn></mrow><mrow><mo>(</mo><mn>2</mn><mi>k</mi><mo>)</mo><mo>!</mo></mrow></mfrac><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mi>p</mi><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><mi>p</mi><mo>−</mo><mn>1</mn><mo>=</mo><mi>k</mi><mi>n</mi></math></span>. By establishing some theories on almost circulant matrices, we show that<span><span><span><math><mi>det</mi><mo>⁡</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>=</mo><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mfrac><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>p</mi><mo>+</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><msup><mrow><mi>p</mi></mrow><mrow><mo>−</mo><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msup><msub><mrow><mi>a</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>.</mo></math></span></span></span> Here <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo></math></span> is the coefficient of <em>t</em> in the minimal polynomial of <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>y</mi><mo>∈</mo><msub><mrow><mi>U</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msub><mo>(</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>π</mi><mi>i</mi><mi>y</mi><mo>/</mo><mi>p</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is the set of all <em>k</em>-th roots of unity over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>. Also, for <span><math><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span> we obtain explicit expressions of <span><math><mi>det</mi><mo>⁡</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"103 \",\"pages\":\"Article 102581\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579725000115\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725000115","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究了环切矩阵Bp(k)=[Jp(χki,χkj)−1]1≤i,j≤(p−1 - k)/k的算术性质,其中p为奇素数,1≤k<;p−1是p−1的约数,χ是有限域Fp的所有乘法字符群的生成子,Jp(χki,χkj)是Fp上的Jacobi和。利用Gross-Koblitz公式和一些p进工具,我们首先证明了pn−2det (Bp(k))≡(−1)(n−1)(p+n−3)2(1k!)n−21(2k)!(modp),其中p−1=kn。通过建立关于概循环矩阵的一些理论,我们证明了det (Bp(k))=(- 1)(n - 1)(p+n - 1)2p−(n - 1)nn−2ap(k)。这里ap(k)是∑y∈Uk(e2π /p−1)的最小多项式中t的系数,其中Uk是Fp上所有k个单位根的集合。同样,对于k=1,2,我们得到det (Bp)的显式表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Gross-Koblitz formula and almost circulant matrices related to Jacobi sums
In this paper, we mainly consider arithmetic properties of the cyclotomic matrix Bp(k)=[Jp(χki,χkj)1]1i,j(p1k)/k, where p is an odd prime, 1k<p1 is a divisor of p1, χ is a generator of the group of all multiplicative characters of the finite field Fp and Jp(χki,χkj) is Jacobi sum over Fp. By using the Gross-Koblitz formula and some p-adic tools, we first prove thatpn2detBp(k)(1)(n1)(p+n3)2(1k!)n21(2k)!(modp), where p1=kn. By establishing some theories on almost circulant matrices, we show thatdetBp(k)=(1)(n1)(p+n1)2p(n1)nn2ap(k). Here ap(k) is the coefficient of t in the minimal polynomial of yUk(e2πiy/p1), where Uk is the set of all k-th roots of unity over Fp. Also, for k=1,2 we obtain explicit expressions of detBp(k).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信