{"title":"关于x2q+1 / Fq2的微分谱和沃尔什谱","authors":"Sihem Mesnager , Huawei Wu","doi":"10.1016/j.ffa.2025.102576","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>q</em> be an odd prime power and let <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> be the finite field with <span><math><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> elements. In this paper, we first present a method to determine the differential spectrum of the power function <span><math><mi>F</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn><mi>q</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> on <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>, which provides an alternative proof of the results established by Man et al. (2022) <span><span>[23]</span></span>. When the characteristic of <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> is 3, we also determine the value distribution of the Walsh spectrum of <em>F</em>, showing that it is 4-valued, and use the obtained result to determine the weight distribution of a 4-weight cyclic code.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"103 ","pages":"Article 102576"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the differential and Walsh spectra of x2q+1 over Fq2\",\"authors\":\"Sihem Mesnager , Huawei Wu\",\"doi\":\"10.1016/j.ffa.2025.102576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>q</em> be an odd prime power and let <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> be the finite field with <span><math><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> elements. In this paper, we first present a method to determine the differential spectrum of the power function <span><math><mi>F</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn><mi>q</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> on <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>, which provides an alternative proof of the results established by Man et al. (2022) <span><span>[23]</span></span>. When the characteristic of <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> is 3, we also determine the value distribution of the Walsh spectrum of <em>F</em>, showing that it is 4-valued, and use the obtained result to determine the weight distribution of a 4-weight cyclic code.</div></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"103 \",\"pages\":\"Article 102576\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579725000061\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725000061","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设q是奇素数幂设Fq2是有q2个元素的有限域。在本文中,我们首先提出了一种确定幂函数F(x)=x2q+1在Fq2上的微分谱的方法,这为Man et al.(2022)[23]建立的结果提供了另一种证明。当Fq2的特征为3时,我们还确定了F的Walsh谱的值分布,表明它是4值的,并利用得到的结果确定了一个4权循环码的权值分布。
On the differential and Walsh spectra of x2q+1 over Fq2
Let q be an odd prime power and let be the finite field with elements. In this paper, we first present a method to determine the differential spectrum of the power function on , which provides an alternative proof of the results established by Man et al. (2022) [23]. When the characteristic of is 3, we also determine the value distribution of the Walsh spectrum of F, showing that it is 4-valued, and use the obtained result to determine the weight distribution of a 4-weight cyclic code.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.