类柯赛特图和自对偶码上的距离函数

IF 1.2 3区 数学 Q1 MATHEMATICS
Marko Orel , Draženka Višnjić
{"title":"类柯赛特图和自对偶码上的距离函数","authors":"Marko Orel ,&nbsp;Draženka Višnjić","doi":"10.1016/j.ffa.2025.102580","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>SGL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> be the set of all invertible <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> symmetric matrices over the binary field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Let <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the graph with the vertex set <span><math><msub><mrow><mi>SGL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> where a pair of matrices <span><math><mo>{</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>}</mo></math></span> form an edge if and only if <span><math><mrow><mi>rank</mi></mrow><mo>(</mo><mi>A</mi><mo>−</mo><mi>B</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span>. In particular, <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> is the well-known Coxeter graph. The distance function <span><math><mi>d</mi><mo>(</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span> in <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is described for all matrices <span><math><mi>A</mi><mo>,</mo><mi>B</mi><mo>∈</mo><msub><mrow><mi>SGL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. The diameter of <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is computed. For odd <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, it is shown that each matrix <span><math><mi>A</mi><mo>∈</mo><msub><mrow><mi>SGL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> such that <span><math><mi>d</mi><mo>(</mo><mi>A</mi><mo>,</mo><mi>I</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>5</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> and <span><math><mrow><mi>rank</mi></mrow><mo>(</mo><mi>A</mi><mo>−</mo><mi>I</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> where <em>I</em> is the identity matrix induces a self-dual code in <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msubsup></math></span>. Conversely, each self-dual code <em>C</em> induces a family <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span> of such matrices <em>A</em>. The families given by distinct self-dual codes are disjoint. The identification <span><math><mi>C</mi><mo>↔</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span> provides a graph theoretical description of self-dual codes. A result of Janusz (2007) is reproved and strengthened by showing that the orthogonal group <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> acts transitively on the set of all self-dual codes in <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msubsup></math></span>.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"103 ","pages":"Article 102580"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The distance function on Coxeter-like graphs and self-dual codes\",\"authors\":\"Marko Orel ,&nbsp;Draženka Višnjić\",\"doi\":\"10.1016/j.ffa.2025.102580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><msub><mrow><mi>SGL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> be the set of all invertible <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> symmetric matrices over the binary field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Let <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the graph with the vertex set <span><math><msub><mrow><mi>SGL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> where a pair of matrices <span><math><mo>{</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>}</mo></math></span> form an edge if and only if <span><math><mrow><mi>rank</mi></mrow><mo>(</mo><mi>A</mi><mo>−</mo><mi>B</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span>. In particular, <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> is the well-known Coxeter graph. The distance function <span><math><mi>d</mi><mo>(</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span> in <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is described for all matrices <span><math><mi>A</mi><mo>,</mo><mi>B</mi><mo>∈</mo><msub><mrow><mi>SGL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. The diameter of <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is computed. For odd <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, it is shown that each matrix <span><math><mi>A</mi><mo>∈</mo><msub><mrow><mi>SGL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> such that <span><math><mi>d</mi><mo>(</mo><mi>A</mi><mo>,</mo><mi>I</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>5</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> and <span><math><mrow><mi>rank</mi></mrow><mo>(</mo><mi>A</mi><mo>−</mo><mi>I</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> where <em>I</em> is the identity matrix induces a self-dual code in <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msubsup></math></span>. Conversely, each self-dual code <em>C</em> induces a family <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span> of such matrices <em>A</em>. The families given by distinct self-dual codes are disjoint. The identification <span><math><mi>C</mi><mo>↔</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span> provides a graph theoretical description of self-dual codes. A result of Janusz (2007) is reproved and strengthened by showing that the orthogonal group <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> acts transitively on the set of all self-dual codes in <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msubsup></math></span>.</div></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"103 \",\"pages\":\"Article 102580\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579725000103\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725000103","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设SGLn(F2)为二元域F2上所有可逆n×n对称矩阵的集合。设Γn为顶点集SGLn(F2)的图,其中一对矩阵{a,B}形成一条边当且仅当秩(a−B)=1。特别是,Γ3是著名的考克斯特图。对于所有矩阵A,B∈SGLn(F2),描述Γn中的距离函数d(A,B)。计算Γn的直径。对于奇数n≥3,证明了每个矩阵A∈SGLn(F2),使得d(A,I)=n+52,秩(A - I)=n+12,其中I为单位矩阵,在F2n+1中诱导出一个自对偶码。相反,每一个自对偶码C可归纳出这样的矩阵a的族FC。由不同的自对偶码给出的族是不相交的。判别C↔FC提供了自对偶码的图理论描述。通过证明正交群On(F2)传递作用于F2n+1中所有自对偶码的集合,对Janusz(2007)的结果进行了修正和强化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The distance function on Coxeter-like graphs and self-dual codes
Let SGLn(F2) be the set of all invertible n×n symmetric matrices over the binary field F2. Let Γn be the graph with the vertex set SGLn(F2) where a pair of matrices {A,B} form an edge if and only if rank(AB)=1. In particular, Γ3 is the well-known Coxeter graph. The distance function d(A,B) in Γn is described for all matrices A,BSGLn(F2). The diameter of Γn is computed. For odd n3, it is shown that each matrix ASGLn(F2) such that d(A,I)=n+52 and rank(AI)=n+12 where I is the identity matrix induces a self-dual code in F2n+1. Conversely, each self-dual code C induces a family FC of such matrices A. The families given by distinct self-dual codes are disjoint. The identification CFC provides a graph theoretical description of self-dual codes. A result of Janusz (2007) is reproved and strengthened by showing that the orthogonal group On(F2) acts transitively on the set of all self-dual codes in F2n+1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信