{"title":"The Gross-Koblitz formula and almost circulant matrices related to Jacobi sums","authors":"Hai-Liang Wu , Li-Yuan Wang","doi":"10.1016/j.ffa.2025.102581","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we mainly consider arithmetic properties of the cyclotomic matrix <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>[</mo><msub><mrow><mi>J</mi></mrow><mrow><mi>p</mi></mrow></msub><msup><mrow><mo>(</mo><msup><mrow><mi>χ</mi></mrow><mrow><mi>k</mi><mi>i</mi></mrow></msup><mo>,</mo><msup><mrow><mi>χ</mi></mrow><mrow><mi>k</mi><mi>j</mi></mrow></msup><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>]</mo></mrow><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>≤</mo><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>−</mo><mi>k</mi><mo>)</mo><mo>/</mo><mi>k</mi></mrow></msub></math></span>, where <em>p</em> is an odd prime, <span><math><mn>1</mn><mo>≤</mo><mi>k</mi><mo><</mo><mi>p</mi><mo>−</mo><mn>1</mn></math></span> is a divisor of <span><math><mi>p</mi><mo>−</mo><mn>1</mn></math></span>, <em>χ</em> is a generator of the group of all multiplicative characters of the finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><msup><mrow><mi>χ</mi></mrow><mrow><mi>k</mi><mi>i</mi></mrow></msup><mo>,</mo><msup><mrow><mi>χ</mi></mrow><mrow><mi>k</mi><mi>j</mi></mrow></msup><mo>)</mo></math></span> is Jacobi sum over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>. By using the Gross-Koblitz formula and some <em>p</em>-adic tools, we first prove that<span><span><span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>det</mi><mo></mo><msub><mrow><mi>B</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>≡</mo><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mfrac><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>p</mi><mo>+</mo><mi>n</mi><mo>−</mo><mn>3</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><msup><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi><mo>!</mo></mrow></mfrac><mo>)</mo></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msup><mfrac><mrow><mn>1</mn></mrow><mrow><mo>(</mo><mn>2</mn><mi>k</mi><mo>)</mo><mo>!</mo></mrow></mfrac><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mi>p</mi><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><mi>p</mi><mo>−</mo><mn>1</mn><mo>=</mo><mi>k</mi><mi>n</mi></math></span>. By establishing some theories on almost circulant matrices, we show that<span><span><span><math><mi>det</mi><mo></mo><msub><mrow><mi>B</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>=</mo><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mfrac><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>p</mi><mo>+</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><msup><mrow><mi>p</mi></mrow><mrow><mo>−</mo><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msup><msub><mrow><mi>a</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>.</mo></math></span></span></span> Here <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo></math></span> is the coefficient of <em>t</em> in the minimal polynomial of <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>y</mi><mo>∈</mo><msub><mrow><mi>U</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msub><mo>(</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>π</mi><mi>i</mi><mi>y</mi><mo>/</mo><mi>p</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is the set of all <em>k</em>-th roots of unity over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>. Also, for <span><math><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span> we obtain explicit expressions of <span><math><mi>det</mi><mo></mo><msub><mrow><mi>B</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"103 ","pages":"Article 102581"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725000115","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we mainly consider arithmetic properties of the cyclotomic matrix , where p is an odd prime, is a divisor of , χ is a generator of the group of all multiplicative characters of the finite field and is Jacobi sum over . By using the Gross-Koblitz formula and some p-adic tools, we first prove that where . By establishing some theories on almost circulant matrices, we show that Here is the coefficient of t in the minimal polynomial of , where is the set of all k-th roots of unity over . Also, for we obtain explicit expressions of .
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.