I. V. Moryakov, Z. A. Zakletsky, N. G. Gusein-zade, A. M. Anpilov
{"title":"Self-Organization of Particles during the Evaporation of Droplets of a Colloidal Solution of a Nanostructure Placed on a Quartz Substrate","authors":"I. V. Moryakov, Z. A. Zakletsky, N. G. Gusein-zade, A. M. Anpilov","doi":"10.3103/S1068335624600487","DOIUrl":"10.3103/S1068335624600487","url":null,"abstract":"<p>An experimental study of self-organization processes that arise during evaporation of droplets of a colloidal solution of nanocarbon in ethanol from the surface of quartz glass is presented. The influence of the distilled-water content in the colloidal solution and the temperature gradient on the substrate on the distribution of nanoparticles and their agglomerates over the contact area of the drop with the surface are discussed. The evaporation of a multicomponent droplet is examined and described from the viewpoint of mass transfer by identifying the characteristic mechanisms of fluid motion in the droplet as the main cause of motion of nanocarbon nanoparticles. A detailed analysis of nanolayers and nanoparticle agglomerates deposited by droplet coating is performed, and the optimal conditions in terms of the substrate temperature and the pure-water content are determined, under which the most uniform spatial distribution of nanoparticles over the contact area of the droplet with the substrate is observed, as well as additional regimes with spatially uniform distributions of nanoparticle agglomerates (more than 10 μm).</p>","PeriodicalId":503,"journal":{"name":"Bulletin of the Lebedev Physics Institute","volume":"51 6","pages":"206 - 213"},"PeriodicalIF":0.6,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development and Testing of an Electronic Barometer for Stratospheric Cosmic Ray Radiosondes","authors":"A. N. Kvashnin, D. S. Teslenko","doi":"10.3103/S1068335623602200","DOIUrl":"10.3103/S1068335623602200","url":null,"abstract":"<p>As part of the program for upgrading a stratospheric radiosonde for cosmic rays, an electronic barorelay was developed using modern circuitry elements. This article considers its design and characteristics. The results of test flights with the electronic barorelay and flights with a mechanical barorelay during similar solar activity in 1978 are also compared. According to the results of all tests, it is recommended to use an electronic barorelay in the radiosonde circuit.</p>","PeriodicalId":503,"journal":{"name":"Bulletin of the Lebedev Physics Institute","volume":"51 6","pages":"221 - 225"},"PeriodicalIF":0.6,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. K. Martyanov, I. A. Tyazhelov, A. F. Popovich, V. G. Ralchenko, S. S. Savin, V. S. Sedov
{"title":"Comparison оf Secondary Nucleation Processes during Diamond Synthesis in Microwave Plasma in H2–CH4–N2 and H2–CH4–NH3 Gas Mixtures","authors":"A. K. Martyanov, I. A. Tyazhelov, A. F. Popovich, V. G. Ralchenko, S. S. Savin, V. S. Sedov","doi":"10.3103/S106833562460044X","DOIUrl":"10.3103/S106833562460044X","url":null,"abstract":"<p>For the first time, the secondary diamond nucleation processes are compared during the growth of polycrystalline diamond films by the MPCVD method with addition of nitrogen and ammonia. An ammonia molecule (NH<sub>3</sub>) has a lower ionization energy than a nitrogen molecule (N<sub>2</sub>) in microwave plasma. It has been established that when using ammonia, the transition to the nanocrystalline structure of diamond occurs at significantly lower concentrations than when using nitrogen.</p>","PeriodicalId":503,"journal":{"name":"Bulletin of the Lebedev Physics Institute","volume":"51 6","pages":"195 - 201"},"PeriodicalIF":0.6,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lattice Boltzmann Simulation of Electric Field in Co-Linear Pulsed Electric Field (PEF) Treatment Chamber","authors":"Kum-Hae Ham, Kyong-Nam Pae, Kyong-Chol Jang","doi":"10.3103/S1068335624600025","DOIUrl":"10.3103/S1068335624600025","url":null,"abstract":"<p>The treatment efficacy of PEF processing is directly subject to its electric field distribution in the treatment zone. A reliable and efficient model to predict the distribution plays a crucial role for clarifying the treatment mechanism and for improving the treatment effect. A lattice Boltzmann model (LBM) to describe the electric field distribution in a co-linear PEF processing was developed. Based on the assumption that PEF does not cause a time varying magnetic field, the simulation was carried out by using the charge conservation equation. For a two-dimensional LBM, we specified the macroscopic boundary condition for electric potential at high voltage and ground electrodes, and bounce-back boundary condition for electric potential at the insulator. Our model was validated by comparing with previous results based on the finite element method (FEM) for the existing co-linear treatment chambers. We suggested another type of treatment chamber with “holo-elliptical” geometry by which the uniformity of electric field was remarkably improved. Our model encourages further investigation to clear the mechanism of PEF treatment and to design more effective device.</p>","PeriodicalId":503,"journal":{"name":"Bulletin of the Lebedev Physics Institute","volume":"51 6","pages":"185 - 194"},"PeriodicalIF":0.6,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimization of Compressed Sampling in Single-Pixel Imaging","authors":"D. V. Sych","doi":"10.3103/S1068335624600463","DOIUrl":"10.3103/S1068335624600463","url":null,"abstract":"<p>Compressed sampling allows to accurately reconstruct a sparse signal even in case of incomplete signal measurements. In this paper, we apply this method to single-pixel imaging and explore the possibilities of image reconstruction by sampling it with an incomplete set of binary light patterns. Using computer simulation, we optimize the image sampling process and find parameters of light patterns such that single-pixel imaging works best.</p>","PeriodicalId":503,"journal":{"name":"Bulletin of the Lebedev Physics Institute","volume":"51 6","pages":"202 - 205"},"PeriodicalIF":0.6,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of Millimetron Observatory Capabilities in Interferometer Mode Using Multifrequency Synthesis","authors":"A. G. Rudnitskiy, M. A. Shchurov","doi":"10.3103/S1068335624600414","DOIUrl":"10.3103/S1068335624600414","url":null,"abstract":"<p>The paper examines the possibilities of using the multifrequency synthesis method to improve the quality of images obtained by the space-ground very long baseline radio interferometer mode of the Millimetron observatory. Simulation of imaging observations for the close vicinity of the supermassive black hole M87 was carried out. The advantages of multifrequency synthesis compared to single-frequency observations are shown. The requirements and limitations of its applicability to space-ground interferometry with the Millimetron observatory are formulated.</p>","PeriodicalId":503,"journal":{"name":"Bulletin of the Lebedev Physics Institute","volume":"51 6","pages":"214 - 220"},"PeriodicalIF":0.6,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the Spectrum of Geomagnetic Radio Emission from Extensive Air Showers in a Kinetic Model","authors":"G. A. Gusev, Z. G. Guseva","doi":"10.3103/S1068335624600372","DOIUrl":"10.3103/S1068335624600372","url":null,"abstract":"<p>Geomagnetic radio emission from an extensive atmospheric shower (EAS) is calculated in a kinetic model where, in contrast to previous models, the radiation of each electron and positron of the shower disk is calculated taking into account their spatial distribution in the disk, the disk evolution along the EAS track, energy spectrum and multiple scattering. Radio emission spectra are found at distances of 100 and 800 m from the vertical EAS axis in the frequency range of 40 to 340 MHz with a resolution of 20 MHz.</p>","PeriodicalId":503,"journal":{"name":"Bulletin of the Lebedev Physics Institute","volume":"51 6","pages":"181 - 184"},"PeriodicalIF":0.6,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prediction of the Lock-in Threshold and Nonlinear Distortions of the Scale Factor of a Laser Gyroscope at the Stage of Assembly of a Ring Resonator","authors":"E. A. Petrukhin, A. S. Bessonov","doi":"10.3103/S1068335624600906","DOIUrl":"10.3103/S1068335624600906","url":null,"abstract":"<p>We report a method for measuring complex coupling coefficients in a ring resonator of a laser gyroscope. It is shown how, using the results of the measurements, to predict the values of the lock-in threshold and nonlinear distortions of the scale factor of a laser gyroscope at the stage of assembly and adjustment of the ring resonator and, in particular, to detect the presence of dust particles in the working areas of the mirrors. The possibilities of using this method to optimize the process of sputtering multilayer mirrors of a laser gyroscope are discussed.</p>","PeriodicalId":503,"journal":{"name":"Bulletin of the Lebedev Physics Institute","volume":"51 3 supplement","pages":"S238 - S248"},"PeriodicalIF":0.6,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141778584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Yu. Kanaev, A. L. Koromyslov, K. V. Prokhorchuk, I. M. Tupitsyn, E. A. Cheshev
{"title":"A Disc-Shaped Composite Ceramic Active Element with Multipass and Multichannel Pumping","authors":"A. Yu. Kanaev, A. L. Koromyslov, K. V. Prokhorchuk, I. M. Tupitsyn, E. A. Cheshev","doi":"10.3103/S1068335624600918","DOIUrl":"10.3103/S1068335624600918","url":null,"abstract":"<p>Disk lasers are a promising configuration that can produce high output power with high spatial quality of radiation due to efficient heat removal from the active region. An important task in the design of disk lasers is to achieve efficient pumping with high gain uniformity across the active region. A new multipass pumping scheme is proposed. The pumping distribution in a Yb:YAG/YAG disk-shaped composite ceramic active element has been numerically simulated and experimentally investigated. It is shown that for such a scheme with 12-channel pumping, the distribution of absorbed pump power with an inhomogeneity of maximum 12.6% can be achieved at a pumping efficiency of 80%.</p>","PeriodicalId":503,"journal":{"name":"Bulletin of the Lebedev Physics Institute","volume":"51 3 supplement","pages":"S201 - S206"},"PeriodicalIF":0.6,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141778579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study of Continuous-Wave Single-Mode Lasing Efficiency in a Longitudinally Pumped YLF:Nd3+ Laser","authors":"A. Yu. Abazadze","doi":"10.3103/S1068335624600852","DOIUrl":"10.3103/S1068335624600852","url":null,"abstract":"<p>We report a theoretical and experimental study of the effect of up-conversion on the efficiency of continuous-wave generation of the fundamental TEM<sub>00</sub> mode in a YLF:Nd<sup>3+</sup> laser longitudinally pumped by laser diode radiation. It is shown that up-conversion is not the reason for the dependence of the single-mode output power of a YLF:Nd<sup>3+</sup> laser on the output mirror reflectance at a constant pump power.</p>","PeriodicalId":503,"journal":{"name":"Bulletin of the Lebedev Physics Institute","volume":"51 3 supplement","pages":"S217 - S227"},"PeriodicalIF":0.6,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141778581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}