{"title":"Operational electricity cost reduction using real-time simulators","authors":"Mojtaba Akbarpour, Shahram Montaser Kouhsari, Seyed Hossein Hesamedin Sadeghi","doi":"10.1016/j.ijepes.2024.110277","DOIUrl":"10.1016/j.ijepes.2024.110277","url":null,"abstract":"<div><div>Ensuring the safe and cost-effective electricity transmission to consumers, along with the efficient and sustainable operation of power systems, has long been a primary objective for power system managers and operators. However, achieving optimal performance in a modern power system requires timely planning and operational optimal routines to be run within the realm of real-time simulation programs, and sometimes, the divergence becomes a problem with these developed routines. Despite extensive research aimed at advancing these objectives, the growing complexity of networks and their constraints has often led to the oversight of simultaneously considering both technical and economic aspects during operation. In this paper, an innovative real-time framework is introduced to reduce the operational costs of a power system swiftly. This framework addresses various nonlinear constraints, such as transmission losses, generation-consumption balance, power device limitations, and transient stability constraints, across various operational scenarios within a real-time simulator. This novel approach leverages scattered search and intentional contingencies within the network to pinpoint the optimal operating point, taking into account various network dynamics, including Automatic Voltage Regulators (AVR), governors, and tap of the transformers. The proposed method offers a fast and robust approach to identifying the most effective operating conditions for a power system. It incorporates considerations for sudden contingencies and extends capabilities through parallel simulations. It not only facilitates pre-determined preventive actions but also enables the adjustment of control parameters during post-contingency periods, such as fine-tuning of the active and reactive power generation of generators and adjusting the tap settings of transformers within power networks. Since the network simulation can be executed on distributed computers, referred to as ’Global,’ it is possible to achieve global network optimization. This approach allows for the consideration of grid networks, including renewable energy sources with models distributed through PCs. Also, it accounts for the induction motor losses within all factories involved in the global simulation. The results obtained from simulating the proposed method on a commercial real-time simulator demonstrate the superior effectiveness of the proposed framework compared to the existing methodologies, highlighting its potential to enhance the operational efficiency and economic viability of power systems.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110277"},"PeriodicalIF":5.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142426877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Zhang , Sicheng Li , Yihan Liu , Zhongjian Tang , Bing Luo
{"title":"Unconstrained optimization MPC method for qZSI-VSG grid-connected wind power system","authors":"Yang Zhang , Sicheng Li , Yihan Liu , Zhongjian Tang , Bing Luo","doi":"10.1016/j.ijepes.2024.110276","DOIUrl":"10.1016/j.ijepes.2024.110276","url":null,"abstract":"<div><div>As the wind power generation becomes increasingly popular, the conventional inverter control methods may lead to power grid instability due to the reduction of inertia and susceptibility to parameter variations. In order to address this problem, a virtual synchronous generation (VSG) technology is combined with the quasi Z-source inverter (qZSI), which has the built-in boost function. To begin with, a finite switch sequence control strategy and an unconstrained optimization model predictive control (MPC) strategy are introduced to achieve multi-objective optimal control of the qZSI-VSG system. The average switching frequency of the inverter is reduced, the ability of the system to mitigate fluctuations in wind turbine output is enhanced, and the current harmonics are minimized. In addition, the computational complexity of the algorithm is simplified by eliminating the need for weight coefficients to be directly added to the cost function. Finally, the correctness and effectiveness of the proposed control strategy are verified by theoretical analysis and experimental results. Overall, this approach offers a promising solution to the challenges posed by the increasing integration of wind power into the power grid.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110276"},"PeriodicalIF":5.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142426875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hao Ming , Kairui Zhang , Ciwei Gao , Jie Yu , Xingyu Yan , Boyuan Xie
{"title":"Research on the strategies of electricity retailers: Retail plan design and reserve market participation","authors":"Hao Ming , Kairui Zhang , Ciwei Gao , Jie Yu , Xingyu Yan , Boyuan Xie","doi":"10.1016/j.ijepes.2024.110232","DOIUrl":"10.1016/j.ijepes.2024.110232","url":null,"abstract":"<div><div>The high penetration of the renewables makes the power grid operation less reliable and risky. Demand Response programs can provide flexible capacity to alleviate the operational pressure. In a typical competitive retail market, the electricity retailer can incentivize the consumers to provide demand reduction in the reserve market and obtain additional profit from the grid. In the wholesale and reserve market, the participants receive a two-part income of certain revenue and activation revenue. In this paper, the optimal strategy of the electricity retailers is studied, including two proposed retail plans as well as the retailer’s bidding strategy in the wholesale reserve market. The proposed strategy is proven effective through a case study, demonstrating that introducing incentive-based demand response in the retail plan creates a win-win-win situation for the grid, retailers, and consumers. The experiment demonstrates that competitive bundles can generate at least 22 % additional revenue for retailers, while customized bundles can bring in an additional 23 % revenue for retailers and contribute to the system with an extra 9 % in reserve capacity bidding.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110232"},"PeriodicalIF":5.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142426873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Allocation of Microgrid-Forming resources for distribution systems reliability improvement","authors":"Pedro F. Torres , João T. Pinho , Roberto Zilles","doi":"10.1016/j.ijepes.2024.110285","DOIUrl":"10.1016/j.ijepes.2024.110285","url":null,"abstract":"<div><div>This paper proposes a novel method to allocate distributed generation and energy storage as Microgrid-Forming Resources (MFR) to improve the reliability of medium voltage (MV) grids. A graph-based approach is used, which simplifies the circuit analysis and reduces computational time when compared to exhaustive search methods. First, a medium voltage substation-level Nodal Fault-Effect Matrix (NFEM) is derived from the feeder’s topology, which is used for predictive reliability calculations, and calibrated with historical data. Second, a reduced set of scenarios of MFR allocation are generated using a graph community approach and evaluated in terms of reliability improvement and power and energy requirements of the distributed resources. Two case studies are presented based on real grids with different reliability characteristics and the results indicate that the proposed approach is an insightful tool for distribution system planners to evaluate the integration of microgrids to improve system reliability.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110285"},"PeriodicalIF":5.0,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142426872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peiyao Guo , Shahab Dehghan , Vladimir Terzija , Thomas Hamacher , Vedran S. Perić
{"title":"Assessment of wind-related storage investment options in a market-based environment","authors":"Peiyao Guo , Shahab Dehghan , Vladimir Terzija , Thomas Hamacher , Vedran S. Perić","doi":"10.1016/j.ijepes.2024.110265","DOIUrl":"10.1016/j.ijepes.2024.110265","url":null,"abstract":"<div><div>With the increasing share of wind power in the energy sector, many countries start to cut back supporting policies for wind power and shift towards market-oriented schemes, challenging the profitability of wind farms. Energy storage offers a flexible solution to enhance their profitability. This work explores different wind-related storage investment modes, including 1) direct ownership, 2) cooperative, and 3) competitive modes in a market-based environment. For the direct ownership mode, a bilevel single-leader-single–follower Stackelberg game model is proposed, where wind farms invest in and operate storage facilities strategically to maximize their profits in the upper level, while the lower-level problem represents the system operator’ s market-clearing process. A cooperative game framework is presented for the cooperative mode, that wind farms and storage investors agree on a profit allocation rule, i.e., Shapley value or Nucleolus to collaborate in investing and bidding as a coalition. The competitive mode is interpreted as a multi-leader-single-follower Stackelberg game, describing an independent investor investing in and operating storage facilities in competition with wind farms. Case studies conducted on a 6-bus and the IEEE 30-bus test systems demonstrate that storage facilities directly invested in by wind farms are the best option for maximizing their profits, resulting in up to an 8.7% increase. The cooperative option provides a suboptimal increase of up to 3.1%, diversifying the costs and risks associated with storage investments. In contrast, the competitive mode can diminish wind farms’ profitability, with up to a 30.6% decrease in profits.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110265"},"PeriodicalIF":5.0,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142426870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of a novel full thyristors hybrid DC circuit breaker combining vacuum and gas integrated series switch","authors":"Xian. Cheng, Yadong. Yu, Guowei Ge, Tengfei Wu","doi":"10.1016/j.ijepes.2024.110257","DOIUrl":"10.1016/j.ijepes.2024.110257","url":null,"abstract":"<div><div>In order to accelerate the fault current transfer rate of hybrid DC circuit breaker (HDCCB) and reduce the cost. A novel full thyristors HDCCB combining vacuum and gas integrated series switch is proposed in this paper, which accelerates the fault current transferred. Moreover, the breaking of higher current levels and lower cost by using the full thyristors to replace the IGBT and other power electronic (PE) devices are realized. The operation of proposed HDCCB is analyzed in detail, and the theoretical numerical model is derived. With the key parameters optimized in terms of the operation HDCCB, the breaking current capability and the effectiveness are verified by the simulation model. Based on this, preliminary tests from a developed low-power prototype are presented and verified the performance of the proposed novel HDCCB.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110257"},"PeriodicalIF":5.0,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142426871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hossam E.A. Abbou , Salem Arif , Abdelmoumene Delassi , Hussein Abubakr , Abderezak Lashab , Ahmed T. Hachemi , Juan C. Vasquez , Josep M. Guerrero
{"title":"Accelerating virtual rotor control with integral feedback loop in low-inertia microgrids","authors":"Hossam E.A. Abbou , Salem Arif , Abdelmoumene Delassi , Hussein Abubakr , Abderezak Lashab , Ahmed T. Hachemi , Juan C. Vasquez , Josep M. Guerrero","doi":"10.1016/j.ijepes.2024.110253","DOIUrl":"10.1016/j.ijepes.2024.110253","url":null,"abstract":"<div><div>This research introduces a new concept called Accelerating Virtual Rotor Control (AVRC) to address the challenges of low inertia and damping in a multi-source microgrid with combined Load Frequency Control (LFC) and Automatic Voltage Regulator (AVR). While existing controllers have shown effectiveness, they often suffer from complexity and impracticality in real-world applications, the AVRC offers simplicity and effectiveness; therefore, it has been applied to low- inertia microgrids (MGs) by incorporating Superconducting Magnetic Energy Storage (SMES) device for improved microgrid response. Nevertheless, the Phase-Locked Loop (PLL) usually suffers from the low bandwidth, which affects the system response, and stability in some cases. Consequently, a Proportional-Integral (PI) controller has been integrated into the VRC system, where the effects of the measurement delays in the PLL are mitigated. In terms of SMES response, PI controller can create a static error resulting an over charging/discharging issue. To overcome this effect, an integral feedback loop is added into the AVRC, resulting in a comprehensive control strategy known as PI-AVRC/I. Additionally, to achieve a better optimization performance for the parameters of the proposed control strategy, a modification has been introduced to the Zebra Optimization Algorithm (MZOA) using Levy Flight motion to enhance its global search capability and avoid local optima. A Hardware-In-the-Loop is demonstrated using a Real-Time Digital Simulator (RTDS) with the aid of RSCAD software in order to evaluate the efficacy of the proposed control strategy under different scenarios such as step load perturbations with/without high Renewable Energy Sources (RESs) integration, random domestic loads fluctuation, and Communication Time Delay (CTD). The results affirm the robustness of the proposed control strategy in maintaining frequency and voltage deviation withing favorable limits, especially with high RESs penetration.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110253"},"PeriodicalIF":5.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiangyu Wang , Liguo Wang , Denis Sidorov , Aliona Dreglea , Lei Fu
{"title":"Research on the current frequency forecasting of a power supply converter for heating the oil pipeline based on gradient boosting decision tree","authors":"Xiangyu Wang , Liguo Wang , Denis Sidorov , Aliona Dreglea , Lei Fu","doi":"10.1016/j.ijepes.2024.110259","DOIUrl":"10.1016/j.ijepes.2024.110259","url":null,"abstract":"<div><div>When large-sized oil pipelines are subjected to skin effect heating under the constraint of limited current, the power supply converter must provide a higher current frequency. However, an inappropriate frequency can lead to increased energy losses and consequently reduce heating efficiency. To achieve higher heating efficiency of large-sized pipelines, this paper proposes a temperature control strategy based on optimal frequency forecast. First, a skin effect heating model is established to illustrate the necessity of frequency forecasting. Then, using the small sample data from the oil field, an optimal frequency forecasting method based on Gradient Boosting Decision Tree (GBDT) is proposed. At the forecasted frequency, a dual closed-loop control strategy for current and temperature, based on a designed three-phase converter, is employed to achieve temperature control under limited current conditions. The feasibility and effectiveness of this approach are demonstrated through a case study involving a 159 mm oil pipeline with a heating current of less than 80A. The experiment shows that with the forecasted frequency, the pipeline temperature reached 40 °C within 14 min, and the energy consumption per unit length of the pipeline is 394 W/m, complying with the standard Q/SY 06022-2016.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110259"},"PeriodicalIF":5.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}