Xiaoling Yuan , Hanqing Ma , Can Cui , Mingyang Liu , Ze Gao
{"title":"Research on impact of synchronous condenser excitation strategy based on PIDA controller and feedforward voltage control on transient voltage of grid","authors":"Xiaoling Yuan , Hanqing Ma , Can Cui , Mingyang Liu , Ze Gao","doi":"10.1016/j.ijepes.2024.110262","DOIUrl":"10.1016/j.ijepes.2024.110262","url":null,"abstract":"<div><div>As grid-connected renewable energy and HVDC transmission grow in China, maintaining stable power grid operation is essential to avert system collapse caused by insufficient reserves of dynamic reactive power. Network topology and dynamic reactive power compensation device settings influence the transient voltage stability. Synchronous condenser (SC) serves as a dynamic reactive power source in modern energy AC/DC grids. However, the traditional SC excitation control strategy causes significant voltage overshoot during the voltage recovery process of the grid. This paper proposes a proportion-integral–differential-acceleration (PIDA) excitation controller which considers grid voltage feedforward for SC to improve FV type excitation control strategy to suppress transient voltage fluctuations, and the fruit fly optimization algorithm (FOA) is employed to tune the PIDA parameters. To verify the control effect, an improved IEEE14-node AC/DC hybrid system is proposed by using the PSCAD/EMTDC simulation platform, and variations in SC excitation voltage, DC transmission active power, reactive power output of SC (<span><math><mrow><msub><mi>Q</mi><mrow><mi>sc</mi></mrow></msub></mrow></math></span>), and AC bus voltage on the inverter side are compared and analyzed in three different excitation control strategies under three fault conditions. Simulation results show that the improved SC excitation control strategy proposed can not only suppress system bus voltage drop effectively and reduce the risk of DC commutation failure, but also reduce voltage overshoot by 6 % and voltage drop by 10 % compared with those of traditional excitation control strategies of SC, and make the system recover faster and effectively improve the power system voltage level and voltage stability.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110262"},"PeriodicalIF":5.0,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142426867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuting Lan , Kun Yu , Xiangjun Zeng , Rong Cai , Qingbo Deng , Chenyu Wu , Shigeng He , Shijie Xu , Youcheng Jia
{"title":"High-impedance faulty feeder detection for cross-country faults in distribution networks based on zero-sequence active power regulation","authors":"Yuting Lan , Kun Yu , Xiangjun Zeng , Rong Cai , Qingbo Deng , Chenyu Wu , Shigeng He , Shijie Xu , Youcheng Jia","doi":"10.1016/j.ijepes.2024.110264","DOIUrl":"10.1016/j.ijepes.2024.110264","url":null,"abstract":"<div><div>The weak characteristics of high-impedance faults and the complex attributes of cross-country faults make faulty feeder detection of cross-country high-impedance faults difficult in medium-voltage networks. This paper deduces the zero-sequence equivalent circuit of cross-country faults through a three-sequence two-port network, analyzes the influence of grounding resistance on cross-country faults, and then explores the limitations of the traditional passive feeder detection methods. Moreover, this paper proposes a novel faulty feeder detection method for cross-country high-impedance faults based on zero-sequence active power regulation. First, based on the zero-sequence current varying characteristics under the regulation of zero-sequence voltage, construct a continuous adjustment region of zero-sequence voltage within the feeder insulation tolerance range. Next, based on the zero-sequence active power varying characteristics in each feeder, propose a discriminant formula for the zero-sequence active power fluctuation coefficient. Finally, adjusting zero-sequence voltage can actively amplify the differences in zero-sequence active power fluctuations between healthy feeders and faulty feeders and accurately select faulty feeders of cross-country high-impedance faults in medium-voltage networks. Various fault conditions are simulated in the PSCAD/EMTDC simulation and field test to verify the effectiveness of the proposed method. The proposed method can accurately identify all faulty feeders of cross-country high-impedance faults in the medium-voltage distribution network.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110264"},"PeriodicalIF":5.0,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142426866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dengao Li , Zhuokai Zhang , Ding Feng , Yu Zhou , Xiaodong Bai , Jumin Zhao
{"title":"Multi-objective two-stage robust optimization of wind/PV/thermal power system based on meta multi-agent reinforcement learning","authors":"Dengao Li , Zhuokai Zhang , Ding Feng , Yu Zhou , Xiaodong Bai , Jumin Zhao","doi":"10.1016/j.ijepes.2024.110273","DOIUrl":"10.1016/j.ijepes.2024.110273","url":null,"abstract":"<div><div>The integration of renewable energy into the power grid poses significant challenges for optimization and scheduling of the power system. In recent years, methods based on deep reinforcement learning have surpassed traditional methods on the high complexity and long-term decision-making of power system optimization and scheduling. However, faced with the inherent uncertainty of renewable energy generation and the different optimization objectives in power system, the deep reinforcement learning methods are unable to effectively address them. This paper proposes a method that combines meta reinforcement learning with multi-agent reinforcement learning to solve the multi-objective two-stage robust optimization of wind/PV/thermal power system. We conducts optimization and scheduling experiments on the IEEE39 bus system. The results indicate that our method not only enhances the robustness of the scheduling strategy, but also outperforms baseline methods in terms of convergence, diversity, and uniformity of the Pareto frontier.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110273"},"PeriodicalIF":5.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142426869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Distributed robust Lasso-MPC based on Nash optimization for smart grid: Guaranteed robustness and stability","authors":"Hossein Ahmadian, Heidar Ali Talebi, Iman Sharifi","doi":"10.1016/j.ijepes.2024.110248","DOIUrl":"10.1016/j.ijepes.2024.110248","url":null,"abstract":"<div><div>The integration of variable renewable energy supplies into <em>smart grid</em> energy management poses several obstacles to system operation. An efficient solution for resource management is essential to ensuring reliable operation. This research presents distributed robust <span><math><mi>L</mi></math></span>asso-model predictive control (<span><math><mi>D − RLMPC</mi></math></span>) as a way to handle energy problems in a <em>multi-layer</em> and <em>multi-time</em> frame optimization method. The <span><math><mi>D − RLMPC</mi></math></span> is a hierarchical system that integrates a centralized <em>supervisory management</em> (<span><math><mi>SM</mi></math></span>) layer for long-term optimization with a distributed <em>coordination management</em> (<span><math><mi>CM</mi></math></span>) layer for short-term adaptation to high power fluctuations. The higher layer, known as the <span><math><mi>SM</mi></math></span>, is responsible for providing the grid operator with specific operating plans and offering guidance to the bottom layer, known as the <span><math><mi>CM</mi></math></span>. The <span><math><mi>CM</mi></math></span> is responsible for coordinating the interaction between the centralized optimization goals and the physical power system layer. Furthermore, a <em>distributed extended Kalman filter</em> (<span><math><mi>DEKF</mi></math></span>) is used to ascertain the inter-dependencies among subsystems. Next, an iterative approach based on <span><math><mi>N</mi></math></span><em>ash optimization</em> is proposed to get the globally optimum solution of the whole system in a partly distributed manner. The simulation results demonstrate the effectiveness of the proposed control approach, which combines the advantages of centralized and distributed control to provide a comprehensive solution for the grid operating issue. To verify and assess the effectiveness of the suggested approach, the acquired outcomes are compared to those of the <em>centralized robust</em>, <em>distributed robust</em>, and <em>distributed</em> <span><math><mi>MPC</mi></math></span> approaches. The simulation findings confirm the practicality of using the suggested system to manage future smart grid assets.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110248"},"PeriodicalIF":5.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142426868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhijie Wang, Haifeng Li, Haotian Jin, Hainan Liu, Yuansheng Liang, Gang Wang
{"title":"Pilot protection for flexible HVDC transmission lines based on transient voltage ratio characteristics","authors":"Zhijie Wang, Haifeng Li, Haotian Jin, Hainan Liu, Yuansheng Liang, Gang Wang","doi":"10.1016/j.ijepes.2024.110263","DOIUrl":"10.1016/j.ijepes.2024.110263","url":null,"abstract":"<div><div>To address the problems of poor speed performance and the large influence of the distributed capacitance of traditional pilot differential protection, a pilot protection scheme based on the characteristics of the transient voltage waveform is proposed. First, the expression of the relationship between the fault voltage of the current-limiting reactor and the measuring point is derived. From the theoretical derivation, it can be inferred that for internal faults, the voltage ratio of the current-limiting reactor to the measuring point on both sides of the HVDC line is constant over a short period. For external faults, the voltage ratio of the current-limiting reactor to the measuring point varies exponentially on the fault side, while on the other side, it remains constant. Based on the above characteristics, the waveform characteristics of the voltage ratio of the current-limiting reactor to the measuring point are used to establish a protection criterion. A pilot protection scheme based on the standard deviation coefficient is proposed. The simulation results show that this method can reliably identify internal and external faults and has high sensitivity and selectivity. Moreover, this method is reliable for different types of faults and fault resistances. In addition, the proposed protection scheme can identify the type of fault in a short time window, requires a low sampling frequency, and does not require data synchronization.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110263"},"PeriodicalIF":5.0,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142359082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuhua Tan , Qian Zhang , Lei Shi , Nuo Yu , Zhe Qian
{"title":"A novel short-term wind power scenario generation method combining multiple algorithms for data-missing wind farm Considering spatial-temporal correlativity","authors":"Yuhua Tan , Qian Zhang , Lei Shi , Nuo Yu , Zhe Qian","doi":"10.1016/j.ijepes.2024.110227","DOIUrl":"10.1016/j.ijepes.2024.110227","url":null,"abstract":"<div><div>For newly-built or expanded wind farms with missing, insufficient or invalid wind power data, the existing methods often have limitations in describing their wind power characteristics and generating wind power scenarios. To this end, a novel effective short-term wind power scenario generation method is put forward in this paper, where similar data domain matching, transfer learning, conditional deep convolutions generative adversarial network (C-DCGAN) and parameter optimization are improved and combined in a unified framework with full consideration of the spatial–temporal correlativity among multiple adjacent wind farms. Specifically, a similar data domain matching process is firstly presented to quickly filter and purify the sufficient wind power data of adjacent wind farms, so as to extract their useful similar wind power characteristics. On this basis, an accurate wind power scenario generation model of data-missing wind farm can be constructed through transfer learning and C-DCGAN training. Then a constrained optimization model is proposed to control the noise parameter in order to obtain the short-term wind power scenarios for a specific day. After expounding the general principle and mathematical formulations of the proposed method, simulation studies and comparative analysis are conducted based on the WIND public dataset to verify the accuracy, effectiveness and superiority of the proposed method.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110227"},"PeriodicalIF":5.0,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142327200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Leveraging blockchain technology to enhance transparency and efficiency in carbon trading markets","authors":"Ameni Boumaiza, Kenza Maher","doi":"10.1016/j.ijepes.2024.110225","DOIUrl":"10.1016/j.ijepes.2024.110225","url":null,"abstract":"<div><div>The global energy sector is undergoing a significant transformation, driven by the emergence of ‘prosumers’ - individuals who generate and consume energy. This shift is redefining traditional roles and is propelled by a growing demand for sustainable and renewable energy. Prosumers utilize decentralized energy sources, such as solar panels and wind turbines, enhancing energy independence by producing their own energy and selling any surplus back to the grid. However, this decentralized landscape presents challenges in accurately tracking carbon emissions and establishing equitable pricing mechanisms. In response to these challenges, we propose an innovative blockchain-based peer-to-peer (P2P) trading platform for carbon allowances. This novel approach gives prosumers a decisive influence over energy pricing, ensuring a more equitable distribution of energy resources. The blockchain framework benefits from decentralization, promoting transparency, security, and an immutable record of energy transactions and carbon emissions. To evaluate the platform’s effectiveness, we will initiate a real-world pilot project within the Education City Community Housing (ECCH) to gather empirical data over one year. The pilot will involve various participants—including prosumers and traditional consumers—and will meticulously monitor energy production, consumption, and trading activities. By comparing this decentralized system with traditional energy models, we aim to assess its impact on carbon emissions, user satisfaction, and overall economic viability, paving the way for a sustainable energy future.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110225"},"PeriodicalIF":5.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tao Hu , Jian Ma , Xuewei Guo , Lixing Yang , Lintao Zhou , Junlei Huang , Chong Li
{"title":"Multifactor evaluation method of smart meter","authors":"Tao Hu , Jian Ma , Xuewei Guo , Lixing Yang , Lintao Zhou , Junlei Huang , Chong Li","doi":"10.1016/j.ijepes.2024.110261","DOIUrl":"10.1016/j.ijepes.2024.110261","url":null,"abstract":"<div><div>As an important terminal of smart grid, smart meter has the functions of equipment health monitoring and power metering. However, it is difficult to quantify the impact of factors such as ex-factory parameters, historical failure rates, electromagnetic interference when conducting an operational condition assessment. Therefore, in view of the large number of influencing factors and the difficulty in quantifying the degree of influence, an improved multifactor evaluation model for the operating status of smart meters is constructed. Firstly, a multifactor index system for evaluating the operating state of smart meters is constructed by analyzing the working mechanism and operating characteristics of smart meters. Then, an improved combinatorial weighting method is proposed by combining the subjective weight and the objective weight. The combinatorial weighting method is used to estimate the weight of factors in the health status evaluation of smart meters, and the improved multifactor evaluation method is presented to evaluate the health status of smart meters. Finally, an example is given to verify and analyze the proposed method. Compared with the other three methods, this method can provide effective evaluation results, and help guide targeted maintenance or replacement to improve the efficiency of smart meter detection.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110261"},"PeriodicalIF":5.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing MPPT efficiency in PV systems under partial shading: A hybrid POA&PO approach for rapid and accurate energy harvesting","authors":"Hao Wang , Lin Li , Haoshen Ye , Weiwei Zhao","doi":"10.1016/j.ijepes.2024.110260","DOIUrl":"10.1016/j.ijepes.2024.110260","url":null,"abstract":"<div><div>Partial shading in operational environments introduces multiple peaks in the output characteristics of photovoltaic (PV) systems, presenting significant challenges to energy harvesting. This study introduces a novel meta-heuristic algorithm, termed POA&PO, which aims to address the maximum power point tracking (MPPT) issues in PV systems. The algorithm capitalizes on the global search capability of the POA method to quickly pinpoint the range with the maximum power, followed by the fast convergence of the PO method to ensure both rapidity and accuracy of the solution. Extensive simulation tests, conducted in MATLAB/SIMULINK, have demonstrated the efficacy of the POA&PO algorithm, achieving an average tracking efficiency of 99.97 % with a convergence time of 0.3 s in step response tests; under the EN50530 test standard, the algorithm also showed sustained and stable tracking of ramp signals. Moreover, practical testing utilizing a new, low-cost indoor PV simulator confirmed the algorithm’s high performance under controlled conditions, yielding an average tracking efficiency of 97.03 % and a convergence time of 0.18 s. This paper highlights the capacity of the developed algorithm to reliably, accurately, and swiftly achieve high energy transfer efficiency. Additionally, the innovative and economical experimental testing methods employed are emphasized, contributing to the practical applicability and cost-effectiveness of the proposed solution.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110260"},"PeriodicalIF":5.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A decision-making model for joint energy and reserve scheduling of wind power producers with local intraday demand response exchange market","authors":"Ehsan Nokandi , Mostafa Vahedipour-Dahraie , Saeed Reza Goldani , Pierluigi Siano","doi":"10.1016/j.ijepes.2024.110234","DOIUrl":"10.1016/j.ijepes.2024.110234","url":null,"abstract":"<div><div>In this paper, a three-stage stochastic bi-level optimization framework is presented for optimal participation of wind power producers (WPPs) in day-ahead (DA), intraday, and balancing markets. In this framework, to leverage demand response (DR) services, a peer-to-peer (P2P) energy trading platform is implemented that allows local load aggregators (LAs) to contribute to the intraday markets improving both LAs’ and WPP’s benefits. Participating in the intraday DR exchange (IDRX) market enables WPP to purchase DR services from LAs, to reduce the penalty cost on the deviation between the day-head bidding and the real-time dispatch. A Stackelberg game for the bi-level decision-making model captures the conflict of interests between the WPP and LAs, in which, the upper level seeks to maximize WPP profit, while the lower level aims to maximize LAs’ economic surplus. The bi-level model is converted into its equivalent single-level mixed-integer quadratic problem (MIQP) employing the Karush-Kuhn-Tucker (KKT) conditions and strong duality theorem. Simulation results show that participation of the WPP in the IDRX market and employing spinning reserve and DR services for compensating the uncertainties are greatly dependent on its risk preferences and increase its expected profit in all conditions, significantly.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110234"},"PeriodicalIF":5.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0142061524004551/pdfft?md5=db206fe784a5375159de981349e3f8b7&pid=1-s2.0-S0142061524004551-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}