Yang Wang , Liang Ruan , Mengling Yang , Xianyong Xiao , Song Chen , Oriol Gomis-Bellmunt
{"title":"Control interaction analysis of hybrid system with grid-following and grid-forming inverters based on admittance decomposition","authors":"Yang Wang , Liang Ruan , Mengling Yang , Xianyong Xiao , Song Chen , Oriol Gomis-Bellmunt","doi":"10.1016/j.ijepes.2024.110267","DOIUrl":"10.1016/j.ijepes.2024.110267","url":null,"abstract":"<div><div>In high renewable penetrated power systems, both grid-forming (GFL) and grid-following (GFM) inverters play an important role in maintaining the system stability and economic operation. However, the two kinds of inverters exhibit distinct dynamic characteristics; thus, interconnecting them in a close electrical distance may cause the stability concern. In this paper, the small-signal stability of a hybrid system with GFM and GFL inverters is investigated. Based on the idea of admittance decomposition, this paper first decomposes the overall admittance of two inverters into several sub-admittances corresponding to different control loops and circuit components. Then an in-depth analysis is conducted to reveal the dynamic interaction between multiple time-scale control loops based on decomposed admittances. Moreover, the impact of the line impedance, the grid strength, and the power flow on the system stability is analyzed and a security region is further developed. The accuracy and effectiveness of the analysis are validated through eigenvalue analysis, simulations and hardware in the loop based experiments.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110267"},"PeriodicalIF":5.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficient electromagnetic transient simulation for DFIG-based wind farms using fine-grained network partitioning","authors":"Jiale Yu, Haoran Zhao, Yibao Jiang, Bing Li, Linghan Meng, Futao Yang","doi":"10.1016/j.ijepes.2024.110297","DOIUrl":"10.1016/j.ijepes.2024.110297","url":null,"abstract":"<div><div>Electromagnetic transient (EMT) simulation plays a critical role in understanding the dynamic behavior and fast transients involved in wind farms (WFs). However, as WFs continue to develop on a large scale, the increasing number of wind turbines and network nodes poses significant challenges for efficient EMT simulation of WFs. To address this issue, we propose a fine-grained network decoupling method for doubly-fed induction generator (DFIG) based WFs. This paper first establishes the decoupling algorithm for core electrical equipment of DFIG-based WFs. By employing device-level fine-grained decoupling, the dimensionality of the admittance matrix for WF is effectively reduced, significantly decreasing the computational load. Additionally, this paper establishes a scalable computational framework by integrating multi-threaded parallel computation into the simulation process, which enhances efficiency further. The proposed method is compared with detailed models in Matlab/Simulink to verify efficiency and accuracy. Simulation results demonstrate that this method significantly improves simulation efficiency, achieving a two-order-of-magnitude speedup with 50 wind turbines, and it maintains high simulation accuracy, with a maximum relative error of 1.68%.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110297"},"PeriodicalIF":5.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yi Zhang , Tian Lan , Chuandong Li , Weijie Cai , Zhiyu Lin , Jinrong Lin
{"title":"Holomorphic embedding method based Three-Phase power flow algorithm considering the sensitivity of the initial value","authors":"Yi Zhang , Tian Lan , Chuandong Li , Weijie Cai , Zhiyu Lin , Jinrong Lin","doi":"10.1016/j.ijepes.2024.110271","DOIUrl":"10.1016/j.ijepes.2024.110271","url":null,"abstract":"<div><div>The transmission network is generally considered as three-phase balanced, while the consideration of three-phase unbalance is mainly on distribution networks. However, with the increasingly interconnection of renewable energy, such as wind energy, onto transmission networks, non-adoption of commutation long transmission lines usually results in unbalanced line parameters. Therefore, developing reliable three-phase power flow algorithms for transmission and distribution (T&D) systems becomes more and more important for the reliable and safe operation of emerging power systems. Among the many three-phase power flow algorithms, Newton Raphson method (NRM) and its variants occupy a large share, due to their ability in dealing with multiple sources and looped sub-networks. However, they are sensitive to the initial value, and can hardly ensure convergence to a physically meaningful solution with improper initial values, especially for three-phase unbalanced system. To this end, a general three-phase power flow method for T&D systems is proposed based on the holomorphic embedding method (HEM), and the advantages of the proposed method compared with traditional NRM in solving the power flow problem to a physically meaningful solution are theoretically analyzed. Based on the IEEE 33 system, the modified IEEE 123 system, and a regional power grid in China, it is verified that the proposed method has the advantages of high computational efficiency, reliable converging ability, and independence to the initial value.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110271"},"PeriodicalIF":5.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongxuan Luo , Chen Zhang , Eddy Y.S. Foo , Hoay Beng Gooi , Lu Sun , Tao Zeng , Tengpeng Chen
{"title":"A multi-objective partitioned design method for integrated energy system","authors":"Hongxuan Luo , Chen Zhang , Eddy Y.S. Foo , Hoay Beng Gooi , Lu Sun , Tao Zeng , Tengpeng Chen","doi":"10.1016/j.ijepes.2024.110291","DOIUrl":"10.1016/j.ijepes.2024.110291","url":null,"abstract":"<div><div>The complexity of a large-scale integrated energy system imposes huge computational burden. Besides, centralised state estimation is not suitable for fast and coordinated optimal management of multi-flow coupled systems and efficient energy utilisation. Furthermore, existing distributed state estimations are dealing with the established static system in the form of partitions. Considering the current method of modelling nonlinear fluids, the final impact on the performance of multiple assessments is non-convex for different partitioning approaches. This paper proposes a multi-objective distributed state estimation design approach for an integrated energy system based on non-dominated sorting genetic algorithm-II and unscented Kalman filter. The integrated energy system model contains the electric-gas-thermal system and various coupled units. By comparing and evaluating the estimation accuracy, calculation time and economic indicators of the system with different partitions of the system load, the optimal Pareto solution set are obtained from the multi-objective optimisation, which then guides the construction layout to satisfy different application requirements. In situations where the specific requirements are not clear, this paper gives the operator an objective method recommendation with the help of the entropy weight and Topsis synthesis assessment method. The validity of the method is verified by several case studies, and the method not only assists the estimation of the existing integrated energy system, but it also offers engineering significance in guiding the construction of the future integrated energy system.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110291"},"PeriodicalIF":5.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Siqi Liu , Pengfei Hu , Yanxue Yu , Zheng Chen , Daozhuo Jiang , Wenbin Lin
{"title":"A novel fault ride through strategy for grid-connected virtual synchronous Generators: Power angle stability enhancement and current limiting","authors":"Siqi Liu , Pengfei Hu , Yanxue Yu , Zheng Chen , Daozhuo Jiang , Wenbin Lin","doi":"10.1016/j.ijepes.2024.110293","DOIUrl":"10.1016/j.ijepes.2024.110293","url":null,"abstract":"<div><div>As more and more renewable energy generations (REGs) are connected to the power grid through grid-following converters, the lack of inertia has become a challenge to grid-frequency stability. Virtual Synchronous Generator (VSG) is a prospected solution for this issue. However, VSGs still have several unresolved issues in practical application. Especially, in a three-phase symmetrical fault scenario, the inrush current may damage the converter and the VSG would lose synchronization with the grid. To address these issues, this paper presents a novel fault ride through (FRT) strategy. First, the transient behaviours of VSGs, including transient current characteristics and power angle characteristics are analysed, which reveals that the increase of the power angle would aggravate the inrush current. Thus, an angular frequency dynamic compensation (AFDC) strategy is proposed to eliminate the instability of power angle. Then, this paper presents a current-limiting strategy combining virtual impedance (VI) and reference voltage adjustment to limit the fault current to a safe level. Finally, the time-domain simulations and experimental tests are performed to verify the effectiveness of the proposed FRT strategy.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110293"},"PeriodicalIF":5.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142437958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiangyang Liu, Zhong Tang, Haoyang Cui, Chenyu Wang
{"title":"MMC-HVDC grids transmission line protection method: Based on permutation entropy algorithm","authors":"Xiangyang Liu, Zhong Tang, Haoyang Cui, Chenyu Wang","doi":"10.1016/j.ijepes.2024.110296","DOIUrl":"10.1016/j.ijepes.2024.110296","url":null,"abstract":"<div><div>Modular multilevel converter high-voltage direct current is increasingly used for electric energy transmission and is a method for addressing energy distribution. However, when a DC short circuit fault occurs in the transmission line, the fault current rapidly increases, posing a threat to the normal operation of the MMC-HVDC grid. Therefore, it is necessary to quickly identify faults in the transmission line to protect the safe operation of the grid. To address this issue, this paper proposes a novel protection method for MMC-HVDC grids based on the permutation entropy algorithm. The permutation entropy algorithm exhibits good performance in analyzing the degree of disorder in signal data. In this paper, wavelet transform is used to decompose the sampled signal, extract detail coefficients at different frequencies, and then calculate permutation entropy values to identify faults based on their characteristics. Finally, a simulation model of an MMC-HVDC grid is built using PSCAD/EMTDC to verify the accuracy of the proposed method. The results show that the proposed method performs well under different fault distances, fault resistances, and noise interference.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110296"},"PeriodicalIF":5.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142437867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qiangqiang Li, Wei Chen, Zhanhong Wei, Zhenyu Kang, Yan Tang
{"title":"Stability and modal analysis of a DFIG-based wind energy conversion system under stator voltage vector control","authors":"Qiangqiang Li, Wei Chen, Zhanhong Wei, Zhenyu Kang, Yan Tang","doi":"10.1016/j.ijepes.2024.110286","DOIUrl":"10.1016/j.ijepes.2024.110286","url":null,"abstract":"<div><div>In a double-fed induction generator-based wind energy conversion system (DFIG-based WECS) with a stator flux orientation<strong>,</strong> a nonlinear wind power generation system based on stator voltage vector control, is established and analyzed in this paper for modal and stability analysis in response to the effect of the observation error of the magnetic chain of a doubly-fed induction motor. First, a dynamic model of a DFIG-based WECS was created, and its oscillation modes and participation factors were examined in order to account for both rotor-side and grid-side control. Second, a mathematical model for a WECS that considers only the rotor-side converter was built and evaluated. This included a theoretical analysis of the grid-side converter’s control loop, which was not involved in oscillations through participation variables. Concurrently, time-domain simulation analysis and tiny signal analysis techniques were used to validate the fundamental characteristics of the WECS and a possible route for inverter control settings to create wide-band oscillations. Finally, two dynamic mathematical models and the stability of the DFIG-based WECS under a stator voltage were verified on the hardware in the loop(HIL) simulation platform. Both simulations and experiments confirm that the established DFIG-based WECS has good grid-connection performance, that the dynamic process of the GSC (grid-side converter, GSC)does not participate in the oscillatory mode. This work provides a theoretical basis for the conversion and application of wind energy.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110286"},"PeriodicalIF":5.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaolong Liu , Lujie Yu , Jiebei Zhu , Hongjie Jia , Chi Yung Chung , Vladimir Terzija , Jean Mahseredjian
{"title":"Adaptive filter based sub-synchronous oscillation damping strategy for doubly-fed induction generators","authors":"Xiaolong Liu , Lujie Yu , Jiebei Zhu , Hongjie Jia , Chi Yung Chung , Vladimir Terzija , Jean Mahseredjian","doi":"10.1016/j.ijepes.2024.110280","DOIUrl":"10.1016/j.ijepes.2024.110280","url":null,"abstract":"<div><div>To address the technical challenge that the conventional sub-synchronous oscillation (SSO) damping strategy for doubly-fed induction generator can only suppress SSO in a specific frequency band for series compensated network, this paper proposes an Adaptive Filter Based SSO Damping (AF-SSOD) strategy for Doubly-fed Induction Generators. The AF-SSOD controller consists of a filter-based SSO Damper (SSOD) suppressing module to extract and whittle down the amplitude of the dominant SSO frequency bands, a frequency identification module to obtain real-time dominant SSO frequency by Kaiser window enhanced Fast Fourier transformation (FFT) as well as a frequency locking module to update the central frequency of SSOD, achieving the high adaptability of SSO suppression under various operating conditions. The key parameters of AF-SSOD are analyzed and optimized via small signal analysis (SSA). Finally, simulation verification and comparisons are carried out, showing that AF-SSOD can effectively suppress SSO in different frequencies with satisfactory robustness and superior performance over existing SSO suppressing strategies.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110280"},"PeriodicalIF":5.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Operational electricity cost reduction using real-time simulators","authors":"Mojtaba Akbarpour, Shahram Montaser Kouhsari, Seyed Hossein Hesamedin Sadeghi","doi":"10.1016/j.ijepes.2024.110277","DOIUrl":"10.1016/j.ijepes.2024.110277","url":null,"abstract":"<div><div>Ensuring the safe and cost-effective electricity transmission to consumers, along with the efficient and sustainable operation of power systems, has long been a primary objective for power system managers and operators. However, achieving optimal performance in a modern power system requires timely planning and operational optimal routines to be run within the realm of real-time simulation programs, and sometimes, the divergence becomes a problem with these developed routines. Despite extensive research aimed at advancing these objectives, the growing complexity of networks and their constraints has often led to the oversight of simultaneously considering both technical and economic aspects during operation. In this paper, an innovative real-time framework is introduced to reduce the operational costs of a power system swiftly. This framework addresses various nonlinear constraints, such as transmission losses, generation-consumption balance, power device limitations, and transient stability constraints, across various operational scenarios within a real-time simulator. This novel approach leverages scattered search and intentional contingencies within the network to pinpoint the optimal operating point, taking into account various network dynamics, including Automatic Voltage Regulators (AVR), governors, and tap of the transformers. The proposed method offers a fast and robust approach to identifying the most effective operating conditions for a power system. It incorporates considerations for sudden contingencies and extends capabilities through parallel simulations. It not only facilitates pre-determined preventive actions but also enables the adjustment of control parameters during post-contingency periods, such as fine-tuning of the active and reactive power generation of generators and adjusting the tap settings of transformers within power networks. Since the network simulation can be executed on distributed computers, referred to as ’Global,’ it is possible to achieve global network optimization. This approach allows for the consideration of grid networks, including renewable energy sources with models distributed through PCs. Also, it accounts for the induction motor losses within all factories involved in the global simulation. The results obtained from simulating the proposed method on a commercial real-time simulator demonstrate the superior effectiveness of the proposed framework compared to the existing methodologies, highlighting its potential to enhance the operational efficiency and economic viability of power systems.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110277"},"PeriodicalIF":5.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142426877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}