{"title":"利用多任务学习进行多标签电力系统安全评估","authors":"M.E. Za’ter , A. Sajadi , B.M. Hodge","doi":"10.1016/j.ijepes.2025.111067","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a novel approach to the power system security assessment using Multi-Task Learning, and reformulating the problem as a multi-label classification task. The proposed Multi-Task learning framework simultaneously assesses static, voltage, transient, and small-signal stability, improving both accuracy and interpretability with respect to the most state of the art machine learning methods. It consists of a shared encoder and multiple decoders, enabling knowledge transfer between stability tasks. Experiments on the IEEE 68-bus system demonstrate a measurable superior performance of the proposed method compared to the extant state-of-the-art approaches.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"172 ","pages":"Article 111067"},"PeriodicalIF":5.0000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging Multi-Task Learning for multi-label power system security assessment\",\"authors\":\"M.E. Za’ter , A. Sajadi , B.M. Hodge\",\"doi\":\"10.1016/j.ijepes.2025.111067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces a novel approach to the power system security assessment using Multi-Task Learning, and reformulating the problem as a multi-label classification task. The proposed Multi-Task learning framework simultaneously assesses static, voltage, transient, and small-signal stability, improving both accuracy and interpretability with respect to the most state of the art machine learning methods. It consists of a shared encoder and multiple decoders, enabling knowledge transfer between stability tasks. Experiments on the IEEE 68-bus system demonstrate a measurable superior performance of the proposed method compared to the extant state-of-the-art approaches.</div></div>\",\"PeriodicalId\":50326,\"journal\":{\"name\":\"International Journal of Electrical Power & Energy Systems\",\"volume\":\"172 \",\"pages\":\"Article 111067\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical Power & Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142061525006155\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061525006155","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Leveraging Multi-Task Learning for multi-label power system security assessment
This paper introduces a novel approach to the power system security assessment using Multi-Task Learning, and reformulating the problem as a multi-label classification task. The proposed Multi-Task learning framework simultaneously assesses static, voltage, transient, and small-signal stability, improving both accuracy and interpretability with respect to the most state of the art machine learning methods. It consists of a shared encoder and multiple decoders, enabling knowledge transfer between stability tasks. Experiments on the IEEE 68-bus system demonstrate a measurable superior performance of the proposed method compared to the extant state-of-the-art approaches.
期刊介绍:
The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces.
As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.