{"title":"Near-field underwater explosion and its interaction with a sandwich composite plate","authors":"Akash Pandey , Piyush Wanchoo , Helio Matos , James LeBlanc , Arun Shukla","doi":"10.1016/j.ijimpeng.2024.105155","DOIUrl":"10.1016/j.ijimpeng.2024.105155","url":null,"abstract":"<div><div>Polymeric composite sandwich materials are critical for marine structures, but their behavior under near-field underwater explosions is not well understood. This study investigates the dynamic response of carbon-fiber-reinforced sandwich composites with varying core densities subjected to near-field underwater explosions. Lab-scale experiments were conducted at two explosive stand-off distances using high-speed imaging and Digital Image Correlation (DIC) to capture the evolution of gas bubble dynamics, surface cavitation, and structural deformation. Results showed that reducing the stand-off distance led to a 0.7 ms increase in gas bubble period, along with an 80 mm increase in horizontal migration of the bubble, while vertical migration remained unaffected. The interaction between the gas bubble and surface cavitation, driven by fluid-structure interaction (FSI), significantly influenced the structural response. In particular, the simultaneous collapse of the gas bubble and surface cavitation resulted in higher localized impulsive loading, causing catastrophic failure in low-density core panels. Meanwhile, panels with higher core densities exhibited a 40 % reduction in out-of-plane deflection, demonstrating enhanced resistance to blast loading. This study provides new insights into the fluid-structure interaction mechanisms that occur during near-field underwater explosions and offers a basis for improving the design of marine structures by optimizing material selection and geometric configurations. These findings contribute to a deeper understanding of shock mitigation strategies in composite materials and inform future research in marine structural design under extreme loading conditions.</div></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":"196 ","pages":"Article 105155"},"PeriodicalIF":5.1,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liping Xiao , Haifeng Zhao , Wanlin Zhang , Wenjing Li , Ke Wang
{"title":"Understanding cone crack formation in cosmic dust aerogel collectors by low-velocity similitude impact test","authors":"Liping Xiao , Haifeng Zhao , Wanlin Zhang , Wenjing Li , Ke Wang","doi":"10.1016/j.ijimpeng.2024.105152","DOIUrl":"10.1016/j.ijimpeng.2024.105152","url":null,"abstract":"<div><div>Low-density silica aerogel is an ideal medium for capturing cosmic dust in space, as the perforated tracks provide valuable insights into the characteristics of interplanetary particles. However, the mechanism underlying track formation remains unclear. This study examines the skirt-shaped or cone-in-cone cracks commonly observed in both ground experiments and returned aerogel samples. Similitude impact tests using various techniques are conducted to compare the cone cracks formed at different velocities. Results show that cone cracks typically form at lower impact velocities. Additionally, impact tests with hard spherical projectiles at speeds below 50 m s<sup>-1</sup>, conducted using an electromagnetic coilgun, produce multiple tracks with single cone cracks. The impact process is captured in real-time using a high-speed camera, and the formation mechanism is investigated. A theoretical model, based on contact mechanics and energy methods, is developed to quantify the relationship between cone crack morphology and projectile impact parameters. The model accuracy is validated through experimental results. This study reveals the formation of cone cracks in penetration tracks within silica aerogel. The proposed model identifies the energy absorption mechanism during single cone crack formation, potentially improving the understanding of key parameters (initial size, composition, velocity distribution, and astrophysical source) from the perforated tunnels in cosmic dust aerogel collectors.</div></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":"197 ","pages":"Article 105152"},"PeriodicalIF":5.1,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142720847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ioan I. Feier , Michael L. Anderson , James R. Boudrie , Erin M. Jarrett-Izzi , Jonathon L. Gabriel , Kaleb D. Overby , Jason H. Niebuhr , Paul T. Mead , Kalyan R. Kota , Thomas E. Lacy Jr.
{"title":"Design and evaluation of additively manufactured polyetherimide orbital debris shielding for spacecraft","authors":"Ioan I. Feier , Michael L. Anderson , James R. Boudrie , Erin M. Jarrett-Izzi , Jonathon L. Gabriel , Kaleb D. Overby , Jason H. Niebuhr , Paul T. Mead , Kalyan R. Kota , Thomas E. Lacy Jr.","doi":"10.1016/j.ijimpeng.2024.105150","DOIUrl":"10.1016/j.ijimpeng.2024.105150","url":null,"abstract":"<div><div>The increasingly congested orbital environment around Earth threatens the safety of space assets. Micrometeoroids and orbital debris (MMOD) less than 1 cm but traveling at hypervelocities pose a serious but defensible hazard. Traditional shields are installed during spacecraft assembly and must survive launch loads, constraining their size, shape, and ultimately, effectiveness. Recent advances in on-orbit additive manufacturing have created new opportunities for shield design and deployment. This work describes the modeling and testing of additively manufactured polyetherimide shields. The finite element code CTH was used to model hypervelocity impacts (HVIs) of such shields, and though imperfect, the models were useful for shield design. Several shield designs were additively manufactured and underwent HVI testing with a two-stage light gas gun in the regime of 4 mm diameter aluminum projectile impacts at 5 - 6.5 km/s. All successfully survived the HVIs, indicating their potential effectiveness as MMOD spacecraft shielding.</div></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":"196 ","pages":"Article 105150"},"PeriodicalIF":5.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lin Lang , Zhenwu Luo , Quan Yuan , Zheming Zhu , Lei Zhou , Qian Xu , Xuebing Tang , Hongxia Gao , Jixing Cao , Zihong Gan
{"title":"Crack arrest characteristics and dynamic fracture parameters of moving cracks encountering double holes under impact loads","authors":"Lin Lang , Zhenwu Luo , Quan Yuan , Zheming Zhu , Lei Zhou , Qian Xu , Xuebing Tang , Hongxia Gao , Jixing Cao , Zihong Gan","doi":"10.1016/j.ijimpeng.2024.105158","DOIUrl":"10.1016/j.ijimpeng.2024.105158","url":null,"abstract":"<div><div>Brittle materials such as rock or concrete contain a large number of micro-cracks, voids, and other defects. Under external impacting loads, the interaction between fissures and holes affects the bearing capacity and stability of Engineering structures. To study the interaction mechanism between moving cracks and circular holes, a large-size semi-circular notched with a fissure and double circular hole (SNFDH) specimen was suggested in this research, and the dynamic fracture tests were carried out on the SNFDH specimens with different double circular hole spacing (35 mm, 40 mm, 45 mm, 50 mm, 55 mm, 60 mm, and 70 mm) using a drop hammer impact test device. Crack propagation gauges were employed to track the time and velocity at which the crack propagated along its trajectory. Dynamic Drucker-Prager yield criterion and cumulative damage failure criterion were used in the numerical simulation of the SNFDH concrete materials. The program AUTODYN was employed to simulate the crack growth characteristics when a crack encounters the double hole. The program ABAQUS was applied to calculate the dynamic fracture parameters of cracks. The test results manifest that the crack propagating trajectory has three different characteristics according to the double hole spacing; the double circular hole has an arresting function for a moving crack; the size of the double hole spacing has a significant effect on the crack propagating velocity, crack propagating length, dynamic stress intensity factor and dynamic energy release rate; the configuration of the SNFDH specimen can be used to investigate the crack arrest mechanism when moving crack encountering double holes.</div></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":"195 ","pages":"Article 105158"},"PeriodicalIF":5.1,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142551836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vincenzo Della Corte , Stefano Ferretti , Alice Maria Piccirillo , Alessandra Rotundi , Ivano Bertini , Fabio Cozzolino , Alessio Ferone , Stefano Fiscale , Andrea Longobardo , Laura Inno , Eleonora Ammannito , Giuseppe Sindoni , Chiara Grappasonni , Matthew Sylvest , Manish R. Patel , Hanno Ertel , Mark Millinger , Hanna Rothkaehl
{"title":"Performance assessment of an innovative light and compact dust shield for DISC onboard Comet Interceptor/ESA space probes","authors":"Vincenzo Della Corte , Stefano Ferretti , Alice Maria Piccirillo , Alessandra Rotundi , Ivano Bertini , Fabio Cozzolino , Alessio Ferone , Stefano Fiscale , Andrea Longobardo , Laura Inno , Eleonora Ammannito , Giuseppe Sindoni , Chiara Grappasonni , Matthew Sylvest , Manish R. Patel , Hanno Ertel , Mark Millinger , Hanna Rothkaehl","doi":"10.1016/j.ijimpeng.2024.105146","DOIUrl":"10.1016/j.ijimpeng.2024.105146","url":null,"abstract":"<div><div>The dust ejected by cometary nuclei encodes valuable information on the formation and evolution of the early Solar System. Multiple short-period comets have been studied in situ, but several perihelion passages considerably modified their pristine condition. Comet Interceptor is the first space mission selected by the European Space Agency to study a pristine dynamically new comet in situ. During a fast flyby through the comet coma, hypervelocity impacts with dust particles will represent not only an important source of information, but also a serious hazard to the spacecraft and its payload. Here we discuss the assessment tests performed on the dust shield of the Dust Impact Sensor and Counter instrument (DISC), part of the Comet Interceptor payload, which will be directly exposed to the cometary dust flux. Using a Light-Gas Gun, we shot mm-sized particles at <span><math><mrow><mo>∼</mo><mspace></mspace></mrow></math></span>5 km/s, transferring momenta and kinetic energies representative of those foreseen for the mission. The impact effects on the DISC breadboard were compared to theoretical predictions by a ballistic limit equation for hypervelocity impacts. We find that, with a simple improvement in the dust shield design, DISC is compatible with the expected cometary environment.</div></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":"195 ","pages":"Article 105146"},"PeriodicalIF":5.1,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis and evaluation of suitability of high-pressure dynamic constitutive model for concrete under blast and impact loading","authors":"Lei Yan , Li Chen , Boyu Chen , Qin Fang","doi":"10.1016/j.ijimpeng.2024.105145","DOIUrl":"10.1016/j.ijimpeng.2024.105145","url":null,"abstract":"<div><div>Concrete demonstrates complex dynamic mechanical behaviors under the influence of blast or impact loads, and there are inherent limitations in experimental and theoretical methods when dealing with highly nonlinear problems. As computational technologies and mechanics continue to evolve, it is possible to conduct high-fidelity simulations of the transient response of concrete structures subjected to intense dynamic loads. Such simulations play a crucial role in revealing the propagation laws of stress waves, the progression of damage, the mechanisms of structural failure, and in conducting protective engineering design. An accurate concrete material model is essential for conducting numerical studies. This article reviews the development of high-pressure dynamic constitutive models for concrete in recent years from both experimental research and theoretical modeling perspectives, focusing on the analysis and evaluation of the modeling methods and main shortcomings of the equation of state(EOS), strength model, and damage model. Using single-element numerical simulations under a single loading path and numerical calculations of engineering cases under complex loading paths, a systematic analysis and comparison were conducted on the predictive capabilities of the HJC, RHT, KCC, and CSC models, as well as the newly developed Kong-Fang and Yan-Chen models. It pointed out the impact of high-pressure mechanical behavior of concrete and the cumulative effect of damage under hydrostatic pressure on the calculation results. Finally, a discussion was conducted on the inherent flaws, applicability, and research difficulties of local constitutive models of concrete in the finite element method. This provides a reference for the selection and research of constitutive models when conducting numerical analysis of the blast and impact resistance of concrete structures.</div></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":"195 ","pages":"Article 105145"},"PeriodicalIF":5.1,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lena Leicht , Matteo Colombo , Paolo Martinelli , Cesare Signorini , Viktor Mechtcherine , Marco di Prisco , Silke Scheerer , Manfred Curbach , Birgit Beckmann
{"title":"Protective potential of high-contrast mineral-bonded layers on reinforced concrete slabs subjected to uniform shock waves","authors":"Lena Leicht , Matteo Colombo , Paolo Martinelli , Cesare Signorini , Viktor Mechtcherine , Marco di Prisco , Silke Scheerer , Manfred Curbach , Birgit Beckmann","doi":"10.1016/j.ijimpeng.2024.105149","DOIUrl":"10.1016/j.ijimpeng.2024.105149","url":null,"abstract":"<div><div>This study compares the blast performance of reinforced concrete (RC) slabs with and without strengthening on the impact-facing side. The strengthening strategy employed the application of two thin layers of materials with a high mutual stiffness offset, i.e., high-contrast layers. The first is a low-strength, low-modulus damping layer made of infra-lightweight concrete, followed by a second layer of high-ductility fiber-reinforced concrete. The plain RC slabs under investigation vary in thickness of either 40<!--> <!-->mm or 100<!--> <!-->mm. The layered specimens consist of a 40<!--> <!-->mm thick RC slab strengthened with a 40<!--> <!-->mm damping layer and a 20<!--> <!-->mm cover SHLC<sup>3</sup> layer. This configuration enables a comparison of its behavior with the unstrengthened specimen (a plain 40<!--> <!-->mm thick RC slab) and a specimen with a similar eigenfrequency (the plain 100<!--> <!-->mm thick RC slab). The employed shock tube subjects the specimens to two rapidly rising areal pressures: a low-pressure wave reaching approximately 0.4<!--> <!-->MPa and a high-pressure wave peaking at around 1.2<!--> <!-->MPa. The study assesses the specimens’ response in terms of accelerations, velocities, and deformations. Additionally, it evaluates damage by analyzing crack patterns, Ultrasonic Pulse Velocity (UPV) measurements, and damping analysis. Overall, the layered specimens exhibited performance nearly equivalent to the 100<!--> <!-->mm thick specimens, displaying similar deformations and velocities despite having lower mass and bending stiffness. The high-pressure shock wave hardly damaged the layered specimens, unlike the 40<!--> <!-->mm thick slabs.</div></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":"196 ","pages":"Article 105149"},"PeriodicalIF":5.1,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamic failures at the metal-glass interface under impact loading","authors":"Haifeng Yang, Songlin Xu, Liangzhu Yuan, Meiduo Chen, Yushan Xie, Pengfei Wang","doi":"10.1016/j.ijimpeng.2024.105136","DOIUrl":"10.1016/j.ijimpeng.2024.105136","url":null,"abstract":"<div><div>To investigate dynamic fracture behavior in the metal, three metal spheres (e.g., steel sphere, high purity tungsten sphere, and high purity lead sphere) are accelerated by the gas gun devices to impact glass spheres under the critical speed range (i.e., from 70 m/s to 210 m/s). The velocity interferometer system for any reflector (VISAR) devices are employed to measure the particle velocities at the back surface of glass sphere, and high-speed photographs are utilized to capture the failure process at the metal-glass interface. Due to the asynchronous evolutions of stress fields and strain fields in the violent failure process, the results illustrate quite different failure mechanisms from those by the Split Hopkinson Pressure Bar (SHPB) impacting. Fragmentations of the glass sphere are caused mainly by the radial cracks and the lateral cracks around the metal-glass interface and the edges of the sphere with increasing impact velocity. Dynamic failures in the three metal impactors exhibit different modes, e.g., tensile fracture in the steel impactor, shear fracture in the tungsten impactor, and compressed yielding in the lead impactor. The transferring of strain energy releasing is introduced to describe the failure behavior at the metal-glass interface, and a relaxation-diffusion equation of strain energy releasing is then established based on the experimental results and the numeric results by the discrete element method (DEM). The evolutions of failures at the metal-glass interface are discussed. Further investigation is conducted to describe the dynamic fractures in tungsten impactors and steel impactors based on the dimensional analyses, and the quantitative expressions of these strain rate dependent fracture strains and crack width in the metal impactors are obtained. The results are helpful for the profound understanding of the dynamic fracture in the metal structures and the dynamic fragmentations in the brittle material when subjected to impact loading.</div></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":"195 ","pages":"Article 105136"},"PeriodicalIF":5.1,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiayi Li , Xiongwen Jiang , Hongjian Wei , Yue Li , Wei Zhang
{"title":"Comparative investigation of shock pressure, shock duration, pressure decay time, and elastic energy of both porous gelatin and pure gelatin in shock state","authors":"Jiayi Li , Xiongwen Jiang , Hongjian Wei , Yue Li , Wei Zhang","doi":"10.1016/j.ijimpeng.2024.105148","DOIUrl":"10.1016/j.ijimpeng.2024.105148","url":null,"abstract":"<div><div>Bird strike is an unavoidable threat in the aviation industry. Real birds are typically replaced with 10 wt. % pure gelatin or porous gelatin to simplify bird strike experiments and meet repeatability requirements. Porous gelatin is obtained by adding chemical agents to gelatin solution, which then solidifies, it can be regarded as pure gelatin filled with tiny pores. The differences in shock state characteristics between these two substitutes remain unclear.</div><div>In this paper, flyer plate impact experiments are conducted separately for the two types of gelatin, obtaining <span><math><mrow><msub><mi>u</mi><mi>s</mi></msub><mo>−</mo><msub><mi>u</mi><mi>p</mi></msub></mrow></math></span>Hugoniot. Considering the continuous release waves, the analytical solutions are provided for the pressure decay time and elastic energy anywhere within the gelatin, during the shock state. Numerical models of gelatin strike rigid target are conducted to extract the shock pressure and elastic energy during the shock state. The differences in mechanical properties of gelatin are analysed to understand that result in variations in pressure, shock duration, decay time, and elastic energy.</div><div>It is evident that the shock pressure of pure gelatin is higher than that of porous gelatin. The shock duration of porous gelatin is longer, and its smaller bulk modulus causes the release wave more gradual, resulting in longer shock decay time. The analytical solution of pressure decay time tends to be overestimated, the faster expansion of porous gelatin during pressure release exacerbates this discrepancy, resulting in a greater difference between the analytical solution and numerical model of elastic energy.</div></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":"195 ","pages":"Article 105148"},"PeriodicalIF":5.1,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Grégory Haugou, Hervé Morvan, Jean Dominique Guérin, Eric Markiewicz
{"title":"Evaluation of compression behaviour of 316L SS Gyroid and Diamond structures using SLM process – Experimental programme under static and dynamic compression loadings","authors":"Grégory Haugou, Hervé Morvan, Jean Dominique Guérin, Eric Markiewicz","doi":"10.1016/j.ijimpeng.2024.105147","DOIUrl":"10.1016/j.ijimpeng.2024.105147","url":null,"abstract":"<div><div>The relative comparison in terms of energy absorption efficiency for a set of 4 structures made of various Triply Periodic Minimal Surfaces (TPMS) topologies is experimentally investigated. These TPMS structures are printed by Selective Laser Melting AM process using 316L SS. The study is carried out in consideration of the effect of parameters such as relative density, compressive loading directions and loading rates, number of unit cells for Diamond and Gyroids TPMS both declined for Sheet and Skeletal topologies. The objective is to quantify their structural responses in terms of apparent stress and strain, dynamic enhancement and Specific Energy Absorbed (SEA) and to evaluate their structural integrity in terms of collapse stability. The results reveal that the Sheet pattern of TPMS structures with its constant wall thickness and uniform geometry exhibits better energy absorption capabilities than the Skeletal pattern. The Diamond family shows greater interest rather than the Gyroid family only in the case of the Sheet pattern. The increase in relative density from 20 to 30 % is characterised by improved manufacturing quality, an increase in energy absorption capacity and more homogeneous progressive deformations during compression. On the whole, the set of TPMS geometries exhibits energy absorption capacities prior to those of other conventional cellular materials currently used for impact engineering applications. Finally, in a first approach, an original design methodology using charts can be developed to establish a link between the energy absorption capabilities and the design geometric parameters of TPMS structures.</div></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":"195 ","pages":"Article 105147"},"PeriodicalIF":5.1,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142551835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}