Liangliang Zhao , Hao Wang , Shengyang Fu , Chengxuan Zhao , Yiyong Wu
{"title":"A theoretical model for estimating hypervelocity impact generated plasma (HVIGP) considering phase transitions","authors":"Liangliang Zhao , Hao Wang , Shengyang Fu , Chengxuan Zhao , Yiyong Wu","doi":"10.1016/j.ijimpeng.2025.105341","DOIUrl":null,"url":null,"abstract":"<div><div>Simulation of hypervelocity dust impact generated plasma has been based on experimental fitting, ignoring the impact behavior process, resulting in a disadvantage using at velocity beyond fitting range. Aming on improve simulation model of the impact plasma generation, this article establishes a forward simulation paradigm from the theory of impact behavior to plasma diffusion. By using the higher-order wave velocity and material velocity relationship, as well as the phase transition equation of state, the research model establish a fine simulation extend impact condition upto 1000 GPa, and achieves a consistent description of the impact behavior to the impact ionization process. The model demonstrates a promising correspondence with experimental results, as in close proximity to the magnitude and comparable exponential growth patterns.</div></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":"203 ","pages":"Article 105341"},"PeriodicalIF":5.1000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Impact Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734743X25001228","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Simulation of hypervelocity dust impact generated plasma has been based on experimental fitting, ignoring the impact behavior process, resulting in a disadvantage using at velocity beyond fitting range. Aming on improve simulation model of the impact plasma generation, this article establishes a forward simulation paradigm from the theory of impact behavior to plasma diffusion. By using the higher-order wave velocity and material velocity relationship, as well as the phase transition equation of state, the research model establish a fine simulation extend impact condition upto 1000 GPa, and achieves a consistent description of the impact behavior to the impact ionization process. The model demonstrates a promising correspondence with experimental results, as in close proximity to the magnitude and comparable exponential growth patterns.
期刊介绍:
The International Journal of Impact Engineering, established in 1983 publishes original research findings related to the response of structures, components and materials subjected to impact, blast and high-rate loading. Areas relevant to the journal encompass the following general topics and those associated with them:
-Behaviour and failure of structures and materials under impact and blast loading
-Systems for protection and absorption of impact and blast loading
-Terminal ballistics
-Dynamic behaviour and failure of materials including plasticity and fracture
-Stress waves
-Structural crashworthiness
-High-rate mechanical and forming processes
-Impact, blast and high-rate loading/measurement techniques and their applications