International Journal of Impact Engineering最新文献

筛选
英文 中文
Crack arrest characteristics and dynamic fracture parameters of moving cracks encountering double holes under impact loads 冲击载荷下遇到双孔的移动裂纹的裂纹捕捉特征和动态断裂参数
IF 5.1 2区 工程技术
International Journal of Impact Engineering Pub Date : 2024-10-26 DOI: 10.1016/j.ijimpeng.2024.105158
{"title":"Crack arrest characteristics and dynamic fracture parameters of moving cracks encountering double holes under impact loads","authors":"","doi":"10.1016/j.ijimpeng.2024.105158","DOIUrl":"10.1016/j.ijimpeng.2024.105158","url":null,"abstract":"<div><div>Brittle materials such as rock or concrete contain a large number of micro-cracks, voids, and other defects. Under external impacting loads, the interaction between fissures and holes affects the bearing capacity and stability of Engineering structures. To study the interaction mechanism between moving cracks and circular holes, a large-size semi-circular notched with a fissure and double circular hole (SNFDH) specimen was suggested in this research, and the dynamic fracture tests were carried out on the SNFDH specimens with different double circular hole spacing (35 mm, 40 mm, 45 mm, 50 mm, 55 mm, 60 mm, and 70 mm) using a drop hammer impact test device. Crack propagation gauges were employed to track the time and velocity at which the crack propagated along its trajectory. Dynamic Drucker-Prager yield criterion and cumulative damage failure criterion were used in the numerical simulation of the SNFDH concrete materials. The program AUTODYN was employed to simulate the crack growth characteristics when a crack encounters the double hole. The program ABAQUS was applied to calculate the dynamic fracture parameters of cracks. The test results manifest that the crack propagating trajectory has three different characteristics according to the double hole spacing; the double circular hole has an arresting function for a moving crack; the size of the double hole spacing has a significant effect on the crack propagating velocity, crack propagating length, dynamic stress intensity factor and dynamic energy release rate; the configuration of the SNFDH specimen can be used to investigate the crack arrest mechanism when moving crack encountering double holes.</div></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142551836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance assessment of an innovative light and compact dust shield for DISC onboard Comet Interceptor/ESA space probes 用于彗星拦截器/ESA 空间探测器上 DISC 的创新型轻型紧凑防尘罩的性能评估
IF 5.1 2区 工程技术
International Journal of Impact Engineering Pub Date : 2024-10-24 DOI: 10.1016/j.ijimpeng.2024.105146
{"title":"Performance assessment of an innovative light and compact dust shield for DISC onboard Comet Interceptor/ESA space probes","authors":"","doi":"10.1016/j.ijimpeng.2024.105146","DOIUrl":"10.1016/j.ijimpeng.2024.105146","url":null,"abstract":"<div><div>The dust ejected by cometary nuclei encodes valuable information on the formation and evolution of the early Solar System. Multiple short-period comets have been studied in situ, but several perihelion passages considerably modified their pristine condition. Comet Interceptor is the first space mission selected by the European Space Agency to study a pristine dynamically new comet in situ. During a fast flyby through the comet coma, hypervelocity impacts with dust particles will represent not only an important source of information, but also a serious hazard to the spacecraft and its payload. Here we discuss the assessment tests performed on the dust shield of the Dust Impact Sensor and Counter instrument (DISC), part of the Comet Interceptor payload, which will be directly exposed to the cometary dust flux. Using a Light-Gas Gun, we shot mm-sized particles at <span><math><mrow><mo>∼</mo><mspace></mspace></mrow></math></span>5 km/s, transferring momenta and kinetic energies representative of those foreseen for the mission. The impact effects on the DISC breadboard were compared to theoretical predictions by a ballistic limit equation for hypervelocity impacts. We find that, with a simple improvement in the dust shield design, DISC is compatible with the expected cometary environment.</div></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis and evaluation of suitability of high-pressure dynamic constitutive model for concrete under blast and impact loading 分析和评估爆炸和冲击荷载下混凝土高压动力构成模型的适用性
IF 5.1 2区 工程技术
International Journal of Impact Engineering Pub Date : 2024-10-23 DOI: 10.1016/j.ijimpeng.2024.105145
{"title":"Analysis and evaluation of suitability of high-pressure dynamic constitutive model for concrete under blast and impact loading","authors":"","doi":"10.1016/j.ijimpeng.2024.105145","DOIUrl":"10.1016/j.ijimpeng.2024.105145","url":null,"abstract":"<div><div>Concrete demonstrates complex dynamic mechanical behaviors under the influence of blast or impact loads, and there are inherent limitations in experimental and theoretical methods when dealing with highly nonlinear problems. As computational technologies and mechanics continue to evolve, it is possible to conduct high-fidelity simulations of the transient response of concrete structures subjected to intense dynamic loads. Such simulations play a crucial role in revealing the propagation laws of stress waves, the progression of damage, the mechanisms of structural failure, and in conducting protective engineering design. An accurate concrete material model is essential for conducting numerical studies. This article reviews the development of high-pressure dynamic constitutive models for concrete in recent years from both experimental research and theoretical modeling perspectives, focusing on the analysis and evaluation of the modeling methods and main shortcomings of the equation of state(EOS), strength model, and damage model. Using single-element numerical simulations under a single loading path and numerical calculations of engineering cases under complex loading paths, a systematic analysis and comparison were conducted on the predictive capabilities of the HJC, RHT, KCC, and CSC models, as well as the newly developed Kong-Fang and Yan-Chen models. It pointed out the impact of high-pressure mechanical behavior of concrete and the cumulative effect of damage under hydrostatic pressure on the calculation results. Finally, a discussion was conducted on the inherent flaws, applicability, and research difficulties of local constitutive models of concrete in the finite element method. This provides a reference for the selection and research of constitutive models when conducting numerical analysis of the blast and impact resistance of concrete structures.</div></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic failures at the metal-glass interface under impact loading 冲击荷载下金属-玻璃界面的动态故障
IF 5.1 2区 工程技术
International Journal of Impact Engineering Pub Date : 2024-10-19 DOI: 10.1016/j.ijimpeng.2024.105136
{"title":"Dynamic failures at the metal-glass interface under impact loading","authors":"","doi":"10.1016/j.ijimpeng.2024.105136","DOIUrl":"10.1016/j.ijimpeng.2024.105136","url":null,"abstract":"<div><div>To investigate dynamic fracture behavior in the metal, three metal spheres (e.g., steel sphere, high purity tungsten sphere, and high purity lead sphere) are accelerated by the gas gun devices to impact glass spheres under the critical speed range (i.e., from 70 m/s to 210 m/s). The velocity interferometer system for any reflector (VISAR) devices are employed to measure the particle velocities at the back surface of glass sphere, and high-speed photographs are utilized to capture the failure process at the metal-glass interface. Due to the asynchronous evolutions of stress fields and strain fields in the violent failure process, the results illustrate quite different failure mechanisms from those by the Split Hopkinson Pressure Bar (SHPB) impacting. Fragmentations of the glass sphere are caused mainly by the radial cracks and the lateral cracks around the metal-glass interface and the edges of the sphere with increasing impact velocity. Dynamic failures in the three metal impactors exhibit different modes, e.g., tensile fracture in the steel impactor, shear fracture in the tungsten impactor, and compressed yielding in the lead impactor. The transferring of strain energy releasing is introduced to describe the failure behavior at the metal-glass interface, and a relaxation-diffusion equation of strain energy releasing is then established based on the experimental results and the numeric results by the discrete element method (DEM). The evolutions of failures at the metal-glass interface are discussed. Further investigation is conducted to describe the dynamic fractures in tungsten impactors and steel impactors based on the dimensional analyses, and the quantitative expressions of these strain rate dependent fracture strains and crack width in the metal impactors are obtained. The results are helpful for the profound understanding of the dynamic fracture in the metal structures and the dynamic fragmentations in the brittle material when subjected to impact loading.</div></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative investigation of shock pressure, shock duration, pressure decay time, and elastic energy of both porous gelatin and pure gelatin in shock state 多孔明胶和纯明胶在冲击状态下的冲击压力、冲击持续时间、压力衰减时间和弹性能量的比较研究
IF 5.1 2区 工程技术
International Journal of Impact Engineering Pub Date : 2024-10-19 DOI: 10.1016/j.ijimpeng.2024.105148
{"title":"Comparative investigation of shock pressure, shock duration, pressure decay time, and elastic energy of both porous gelatin and pure gelatin in shock state","authors":"","doi":"10.1016/j.ijimpeng.2024.105148","DOIUrl":"10.1016/j.ijimpeng.2024.105148","url":null,"abstract":"<div><div>Bird strike is an unavoidable threat in the aviation industry. Real birds are typically replaced with 10 wt. % pure gelatin or porous gelatin to simplify bird strike experiments and meet repeatability requirements. Porous gelatin is obtained by adding chemical agents to gelatin solution, which then solidifies, it can be regarded as pure gelatin filled with tiny pores. The differences in shock state characteristics between these two substitutes remain unclear.</div><div>In this paper, flyer plate impact experiments are conducted separately for the two types of gelatin, obtaining <span><math><mrow><msub><mi>u</mi><mi>s</mi></msub><mo>−</mo><msub><mi>u</mi><mi>p</mi></msub></mrow></math></span>Hugoniot. Considering the continuous release waves, the analytical solutions are provided for the pressure decay time and elastic energy anywhere within the gelatin, during the shock state. Numerical models of gelatin strike rigid target are conducted to extract the shock pressure and elastic energy during the shock state. The differences in mechanical properties of gelatin are analysed to understand that result in variations in pressure, shock duration, decay time, and elastic energy.</div><div>It is evident that the shock pressure of pure gelatin is higher than that of porous gelatin. The shock duration of porous gelatin is longer, and its smaller bulk modulus causes the release wave more gradual, resulting in longer shock decay time. The analytical solution of pressure decay time tends to be overestimated, the faster expansion of porous gelatin during pressure release exacerbates this discrepancy, resulting in a greater difference between the analytical solution and numerical model of elastic energy.</div></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of compression behaviour of 316L SS Gyroid and Diamond structures using SLM process – Experimental programme under static and dynamic compression loadings 使用 SLM 工艺评估 316L SS Gyroid 和 Diamond 结构的压缩性能 - 静态和动态压缩载荷下的实验方案
IF 5.1 2区 工程技术
International Journal of Impact Engineering Pub Date : 2024-10-16 DOI: 10.1016/j.ijimpeng.2024.105147
{"title":"Evaluation of compression behaviour of 316L SS Gyroid and Diamond structures using SLM process – Experimental programme under static and dynamic compression loadings","authors":"","doi":"10.1016/j.ijimpeng.2024.105147","DOIUrl":"10.1016/j.ijimpeng.2024.105147","url":null,"abstract":"<div><div>The relative comparison in terms of energy absorption efficiency for a set of 4 structures made of various Triply Periodic Minimal Surfaces (TPMS) topologies is experimentally investigated. These TPMS structures are printed by Selective Laser Melting AM process using 316L SS. The study is carried out in consideration of the effect of parameters such as relative density, compressive loading directions and loading rates, number of unit cells for Diamond and Gyroids TPMS both declined for Sheet and Skeletal topologies. The objective is to quantify their structural responses in terms of apparent stress and strain, dynamic enhancement and Specific Energy Absorbed (SEA) and to evaluate their structural integrity in terms of collapse stability. The results reveal that the Sheet pattern of TPMS structures with its constant wall thickness and uniform geometry exhibits better energy absorption capabilities than the Skeletal pattern. The Diamond family shows greater interest rather than the Gyroid family only in the case of the Sheet pattern. The increase in relative density from 20 to 30 % is characterised by improved manufacturing quality, an increase in energy absorption capacity and more homogeneous progressive deformations during compression. On the whole, the set of TPMS geometries exhibits energy absorption capacities prior to those of other conventional cellular materials currently used for impact engineering applications. Finally, in a first approach, an original design methodology using charts can be developed to establish a link between the energy absorption capabilities and the design geometric parameters of TPMS structures.</div></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142551835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural response of steel-concrete composite panels to near field simultaneous blast and fragmentation loading 钢-混凝土复合板在近场爆炸和碎片同时加载下的结构响应
IF 5.1 2区 工程技术
International Journal of Impact Engineering Pub Date : 2024-10-15 DOI: 10.1016/j.ijimpeng.2024.105142
{"title":"Structural response of steel-concrete composite panels to near field simultaneous blast and fragmentation loading","authors":"","doi":"10.1016/j.ijimpeng.2024.105142","DOIUrl":"10.1016/j.ijimpeng.2024.105142","url":null,"abstract":"<div><div>Steel-concrete composite sandwich panels are used in blast doors or blast walls to protect personnel and equipment in explosive environments due to their superior performance against blast effects. In the design of such panels, most design methods treat blast and fragment loading independently for far-field explosions. However, the synergistic effects of combined blast and fragments loading should be accounted for in close-in explosion scenarios. In this study, a field test program was conducted to assess the damage of the steel-concrete composite panels subjected to close-in explosion of cased charges at various scaled distance between 0.39 and 0.78 m/kg<sup>1/3</sup>. Characterization test of cased charge detonation was performed to explore the combined loading effect. The analysis includes the pressure-time history from the cased charge detonation, distribution of the fragment masses and velocities over the test panels. The structural damage and response of the composite panels against the combined loading effects was measured. The results indicated that in addition to the damage from the blast wave, the panel was remarkably damaged by the fragment impact. Despite the significant structural damage, the panels maintained its structural integrity after the tests. Additionally, quasi-static load tests were conducted on the panels to quantify their load resistant differences in pristine condition and various damaged conditions due to the explosive effects.</div></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic response of double-layer rectangular sandwich plates with graded foam cores under blast loading 带有分级泡沫芯材的双层矩形夹层板在爆炸荷载下的动态响应
IF 5.1 2区 工程技术
International Journal of Impact Engineering Pub Date : 2024-10-15 DOI: 10.1016/j.ijimpeng.2024.105141
{"title":"Dynamic response of double-layer rectangular sandwich plates with graded foam cores under blast loading","authors":"","doi":"10.1016/j.ijimpeng.2024.105141","DOIUrl":"10.1016/j.ijimpeng.2024.105141","url":null,"abstract":"<div><div>In this paper, dynamic response of a fully clamped double-layer (DL) rectangular sandwich plate with graded foam cores (GFC) under blast loading is studied theoretically and numerically. Based on the yield criterion, an analytical model for dynamic response of a DL rectangular sandwich plate with GFC is established under blast loading. With the use of the inscribing and circumscribing squares of the exact yield locus, the bound of the analytical solution of the dynamic response of a double-layer rectangular sandwich plate with GFC is obtained. By neglecting the effect of bending moments, the membrane mode solution of a DL rectangular sandwich plate with GFC in large deflection is obtained. Finite element analysis (FEA) is performed using ABAQUS/Explicit software. The effects of interlayer factor, average yield strength of graded foams, and gradient properties of graded foams on the dynamic response of DL rectangular sandwich plate with GFC are considered. The analytical predictions are in excellent accord with the numerical ones. It is demonstrated that the proposed analytical model is effective to predict the blast response of a DL rectangular sandwich plate with GFC.</div></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediction of low-velocity impact responses for bio-inspired helicoidal laminates based on machine learning 基于机器学习的生物启发螺旋形层压板低速冲击响应预测
IF 5.1 2区 工程技术
International Journal of Impact Engineering Pub Date : 2024-10-11 DOI: 10.1016/j.ijimpeng.2024.105144
{"title":"Prediction of low-velocity impact responses for bio-inspired helicoidal laminates based on machine learning","authors":"","doi":"10.1016/j.ijimpeng.2024.105144","DOIUrl":"10.1016/j.ijimpeng.2024.105144","url":null,"abstract":"<div><div>The inherent capacity of natural protective systems to withstand impact loadings, attributed to their microscale helicoidal architectures, has garnered significant interest. Drawing inspiration from this mechanically robust design, this study aims to introduce the composite laminates with a helicoidal distribution and to accurately and efficiently predict their Low-Velocity Impact (LVI) responses. Initially, the Latin hypercube design (LHS) was employed to generate 500 samples representing various pitch angles. An experimentally verified finite element model was then established to capture the load-displacement curves and energy-time curves for these 500 samples. Subsequently, the Convolutional Neural Network (CNN) model was utilized to accurately predict the load-displacement curves and energy-time curves for bio-inspired helicoidal laminates across different pitch angles. The principal component analysis (PCA) was used to enhance the efficiency of learning the load-displacement and energy-time curves in a reduced dimensional space, and the SHapley Additive exPlanations (SHAP) method was employed to investigate the feature importance of pitch angle. Finally, the helicoidal laminate with the highest energy absorption for a given volume was obtained by the genetic algorithm (GA) combined with the CNN model. This optimized laminate demonstrates a remarkable 9.5 % improvement in energy absorption compared to the best-performing sample within the original data set. Furthermore, the \"spiraling\" delamination damage of the helicoidal laminates was studied, which indicates that the delamination with small pitch angle is more pronounced for that with large pitch angle. The proposed method offers significant advantages in terms of cost reduction and efficiency enhancement for predicting the LVI responses of helicoidal laminates, holding immense potential in structural design and optimization of composite materials.</div></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of bending waves in Torsion Hopkinson Bar experiments using Photon Doppler Velocimetry 利用光子多普勒测速仪评估扭转霍普金森棒实验中的弯曲波
IF 5.1 2区 工程技术
International Journal of Impact Engineering Pub Date : 2024-10-11 DOI: 10.1016/j.ijimpeng.2024.105139
{"title":"Assessment of bending waves in Torsion Hopkinson Bar experiments using Photon Doppler Velocimetry","authors":"","doi":"10.1016/j.ijimpeng.2024.105139","DOIUrl":"10.1016/j.ijimpeng.2024.105139","url":null,"abstract":"<div><div>A Photon Doppler Velocimetry system that measures the propagation of elastic shear waves in a Torsion Hopkinson Bar (THB) system is presented. The method uses multiple fibre optic probes located symmetrically on opposing sides of the apparatus bars, and provides data with high spatial (a laser irradiated spot size of <span><math><mrow><mn>35</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>) and temporal resolution that is ultimately limited by the data acquisition system and used electronic components. A series of validation experiments simulating the movement of the bar subjected to bending and misalignments demonstrated that this approach is effective in detecting and accounting for the bending waves. The THB experiment under non-ideal conditions, where a combination of shear and bending waves propagates in the system, conclusively confirmed that the disturbance in the acquired signals can be properly addressed with the proposed arrangement of the PDV probes. It was reflected in similar measurements of the component of tangential velocity to the strain gauges. This approach shown to be complementary to the conventional strain gauge technique, but can provide better precision and be more robust under loading and/or temperature conditions that may affect the reliability of strain gauge measurements.</div></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信