ISME Journal最新文献

筛选
英文 中文
Niche separation in bacterial communities and activities in porewater, loosely attached, and firmly attached fractions in permeable surface sediments. 渗透性表层沉积物中孔隙水、松散附着和牢固附着部分细菌群落和活动的利基分离。
IF 10.8 1区 环境科学与生态学
ISME Journal Pub Date : 2024-01-08 DOI: 10.1093/ismejo/wrae159
Chyrene Moncada, Carol Arnosti, Jan D Brüwer, Dirk de Beer, Rudolf Amann, Katrin Knittel
{"title":"Niche separation in bacterial communities and activities in porewater, loosely attached, and firmly attached fractions in permeable surface sediments.","authors":"Chyrene Moncada, Carol Arnosti, Jan D Brüwer, Dirk de Beer, Rudolf Amann, Katrin Knittel","doi":"10.1093/ismejo/wrae159","DOIUrl":"10.1093/ismejo/wrae159","url":null,"abstract":"<p><p>Heterotrophic microbes are central to organic matter degradation and transformation in marine sediments. Currently, most investigations of benthic microbiomes do not differentiate between processes in the porewater and on the grains and, hence, only show a generalized picture of the community. This limits our understanding of the structure and functions of sediment microbiomes. To address this problem, we fractionated sandy surface sediment microbial communities from a coastal site in Isfjorden, Svalbard, into cells associated with the porewater, loosely attached to grains, and firmly attached to grains; we found dissimilar bacterial communities and metabolic activities in these fractions. Most (84%-89%) of the cells were firmly attached, and this fraction comprised more anaerobes, such as sulfate reducers, than the other fractions. The porewater and loosely attached fractions (3% and 8%-13% of cells, respectively) had more aerobic heterotrophs. These two fractions generally showed a higher frequency of dividing cells, polysaccharide (laminarin) hydrolysis rates, and per-cell O2 consumption than the firmly attached cells. Thus, the different fractions occupy distinct niches within surface sediments: the firmly attached fraction is potentially made of cells colonizing areas on the grain that are protected from abrasion, but might be more diffusion-limited for organic matter and electron acceptors. In contrast, the porewater and loosely attached fractions are less resource-limited and have faster growth. Their cell numbers are kept low possibly through abrasion and exposure to grazers. Differences in community composition and activity of these cell fractions point to their distinct roles and contributions to carbon cycling within surface sediments.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368169/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141903449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Saccharomyces boulardii enhances anti-inflammatory effectors and AhR activation via metabolic interactions in probiotic communities. 布拉氏酵母菌通过益生菌群落中的代谢相互作用增强抗炎效应因子和 AhR 激活。
IF 10.8 1区 环境科学与生态学
ISME Journal Pub Date : 2024-01-08 DOI: 10.1093/ismejo/wrae212
Karl Alex Hedin, Mohammad H Mirhakkak, Troels Holger Vaaben, Carmen Sands, Mikael Pedersen, Adam Baker, Ruben Vazquez-Uribe, Sascha Schäuble, Gianni Panagiotou, Anja Wellejus, Morten Otto Alexander Sommer
{"title":"Saccharomyces boulardii enhances anti-inflammatory effectors and AhR activation via metabolic interactions in probiotic communities.","authors":"Karl Alex Hedin, Mohammad H Mirhakkak, Troels Holger Vaaben, Carmen Sands, Mikael Pedersen, Adam Baker, Ruben Vazquez-Uribe, Sascha Schäuble, Gianni Panagiotou, Anja Wellejus, Morten Otto Alexander Sommer","doi":"10.1093/ismejo/wrae212","DOIUrl":"10.1093/ismejo/wrae212","url":null,"abstract":"<p><p>Metabolic exchanges between strains in gut microbial communities shape their composition and interactions with the host. This study investigates the metabolic synergy between potential probiotic bacteria and Saccharomyces boulardii, aiming to enhance anti-inflammatory effects within a multi-species probiotic community. By screening a collection of 85 potential probiotic bacterial strains, we identified two strains that demonstrated a synergistic relationship with S. boulardii in pairwise co-cultivation. Furthermore, we computationally predicted cooperative communities with symbiotic relationships between S. boulardii and these bacteria. Experimental validation of 28 communities highlighted the role of S. boulardii as a key player in microbial communities, significantly boosting the community's cell number and production of anti-inflammatory effectors, thereby affirming its essential role in improving symbiotic dynamics. Based on our observation, one defined community significantly activated the aryl hydrocarbon receptor-a key regulator of immune response-280-fold more effectively than the community without S. boulardii. This study underscores the potential of microbial communities for the design of more effective probiotic formulations.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631509/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conditions for the spread of CRISPR-Cas immune systems into bacterial populations. CRISPR-Cas免疫系统在细菌种群中传播的条件。
IF 10.8 1区 环境科学与生态学
ISME Journal Pub Date : 2024-01-08 DOI: 10.1093/ismejo/wrae108
Josie F K Elliott, David V McLeod, Tiffany B Taylor, Edze R Westra, Sylvain Gandon, Bridget N J Watson
{"title":"Conditions for the spread of CRISPR-Cas immune systems into bacterial populations.","authors":"Josie F K Elliott, David V McLeod, Tiffany B Taylor, Edze R Westra, Sylvain Gandon, Bridget N J Watson","doi":"10.1093/ismejo/wrae108","DOIUrl":"10.1093/ismejo/wrae108","url":null,"abstract":"<p><p>Bacteria contain a wide variety of innate and adaptive immune systems which provide protection to the host against invading genetic material, including bacteriophages (phages). It is becoming increasingly clear that bacterial immune systems are frequently lost and gained through horizontal gene transfer. However, how and when new immune systems can become established in a bacterial population have remained largely unstudied. We developed a joint epidemiological and evolutionary model that predicts the conditions necessary for the spread of a CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) immune system into a bacterial population lacking this system. We found that whether bacteria carrying CRISPR-Cas will spread (increase in frequency) into a bacterial population depends on the abundance of phages and the difference in the frequency of phage resistance mechanisms between bacteria carrying a CRISPR-Cas immune system and those not (denoted as ${f}_{Delta }$). Specifically, the abundance of cells carrying CRISPR-Cas will increase if there is a higher proportion of phage resistance (either via CRISPR-Cas immunity or surface modification) in the CRISPR-Cas-possessing population than in the cells lacking CRISPR-Cas. We experimentally validated these predictions in a model using Pseudomonas aeruginosa PA14 and phage DMS3vir. Specifically, by varying the initial ratios of different strains of bacteria that carry alternative forms of phage resistance, we confirmed that the spread of cells carrying CRISPR-Cas through a population can be predicted based on phage density and the relative frequency of resistance phenotypes. Understanding which conditions promote the spread of CRISPR-Cas systems helps to predict when and where these defences can become established in bacterial populations after a horizontal gene transfer event, both in ecological and clinical contexts.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285788/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141428157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Dispersal of microbes from grassland fire smoke to soils. 修正:微生物从草原火灾烟雾扩散到土壤。
IF 10.8 1区 环境科学与生态学
ISME Journal Pub Date : 2024-01-08 DOI: 10.1093/ismejo/wrae232
{"title":"Correction to: Dispersal of microbes from grassland fire smoke to soils.","authors":"","doi":"10.1093/ismejo/wrae232","DOIUrl":"https://doi.org/10.1093/ismejo/wrae232","url":null,"abstract":"","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":"18 1","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142933441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gut microbiota facilitate adaptation of invasive moths to new host plants. 肠道微生物群有助于入侵蛾适应新的寄主植物
IF 11 1区 环境科学与生态学
ISME Journal Pub Date : 2024-01-08 DOI: 10.1093/ismejo/wrae031
Shouke Zhang, Feng Song, Jie Wang, Xiayu Li, Yuxin Zhang, Wenwu Zhou, Letian Xu
{"title":"Gut microbiota facilitate adaptation of invasive moths to new host plants.","authors":"Shouke Zhang, Feng Song, Jie Wang, Xiayu Li, Yuxin Zhang, Wenwu Zhou, Letian Xu","doi":"10.1093/ismejo/wrae031","DOIUrl":"10.1093/ismejo/wrae031","url":null,"abstract":"<p><p>Gut microbiota are important in the adaptation of phytophagous insects to their plant hosts. However, the interaction between gut microbiomes and pioneering populations of invasive insects during their adaptation to new hosts, particularly in the initial phases of invasion, has been less studied. We studied the contribution of the gut microbiome to host adaptation in the globally recognized invasive pest, Hyphantria cunea, as it expands its range into southern China. The southern population of H. cunea shows effective adaptation to Metasequoia glyptostroboides and exhibits greater larval survival on Metasequoia than the original population. Genome resequencing revealed no significant differences in functions related to host adaptation between the two populations. The compatibility between southern H. cunea populations and M. glyptostroboides revealed a correlation between the abundance of several gut bacteria genera (Bacteroides, Blautia, and Coprococcus) and H. cunea survival. Transplanting the larval gut microbiome from southern to northern populations enhanced the adaptability of the latter to the previously unsuitable plant M. glyptostroboides. This research provides evidence that the gut microbiome of pioneering populations can enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10980833/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139998136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aerobic denitrification as an N2O source from microbial communities. 好氧脱硝作为微生物群落的一氧化二氮来源。
IF 10.8 1区 环境科学与生态学
ISME Journal Pub Date : 2024-01-08 DOI: 10.1093/ismejo/wrae116
Nina Roothans, Minke Gabriëls, Thomas Abeel, Martin Pabst, Mark C M van Loosdrecht, Michele Laureni
{"title":"Aerobic denitrification as an N2O source from microbial communities.","authors":"Nina Roothans, Minke Gabriëls, Thomas Abeel, Martin Pabst, Mark C M van Loosdrecht, Michele Laureni","doi":"10.1093/ismejo/wrae116","DOIUrl":"10.1093/ismejo/wrae116","url":null,"abstract":"<p><p>Nitrous oxide (N2O) is a potent greenhouse gas of primarily microbial origin. Oxic and anoxic emissions are commonly ascribed to autotrophic nitrification and heterotrophic denitrification, respectively. Beyond this established dichotomy, we quantitatively show that heterotrophic denitrification can significantly contribute to aerobic nitrogen turnover and N2O emissions in complex microbiomes exposed to frequent oxic/anoxic transitions. Two planktonic, nitrification-inhibited enrichment cultures were established under continuous organic carbon and nitrate feeding, and cyclic oxygen availability. Over a third of the influent organic substrate was respired with nitrate as electron acceptor at high oxygen concentrations (>6.5 mg/L). N2O accounted for up to one-quarter of the nitrate reduced under oxic conditions. The enriched microorganisms maintained a constitutive abundance of denitrifying enzymes due to the oxic/anoxic frequencies exceeding their protein turnover-a common scenario in natural and engineered ecosystems. The aerobic denitrification rates are ascribed primarily to the residual activity of anaerobically synthesised enzymes. From an ecological perspective, the selection of organisms capable of sustaining significant denitrifying activity during aeration shows their competitive advantage over other heterotrophs under varying oxygen availabilities. Ultimately, we propose that the contribution of heterotrophic denitrification to aerobic nitrogen turnover and N2O emissions is currently underestimated in dynamic environments.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11272060/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141447411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemolithoautotrophic diazotrophs dominate dark nitrogen fixation in mangrove sediments. 红树林沉积物中的化学自养型重氮生物在暗固氮过程中占主导地位。
IF 10.8 1区 环境科学与生态学
ISME Journal Pub Date : 2024-01-08 DOI: 10.1093/ismejo/wrae119
Shasha Wang, Lijing Jiang, Zhuoming Zhao, Zhen Chen, Jun Wang, Karine Alain, Liang Cui, Yangsheng Zhong, Yongyi Peng, Qiliang Lai, Xiyang Dong, Zongze Shao
{"title":"Chemolithoautotrophic diazotrophs dominate dark nitrogen fixation in mangrove sediments.","authors":"Shasha Wang, Lijing Jiang, Zhuoming Zhao, Zhen Chen, Jun Wang, Karine Alain, Liang Cui, Yangsheng Zhong, Yongyi Peng, Qiliang Lai, Xiyang Dong, Zongze Shao","doi":"10.1093/ismejo/wrae119","DOIUrl":"10.1093/ismejo/wrae119","url":null,"abstract":"<p><p>Diazotrophic microorganisms regulate marine productivity by alleviating nitrogen limitation. So far chemolithoautotrophic bacteria are widely recognized as the principal diazotrophs in oligotrophic marine and terrestrial ecosystems. However, the contribution of chemolithoautotrophs to nitrogen fixation in organic-rich habitats remains unclear. Here, we utilized metagenomic and metatranscriptomic approaches integrated with cultivation assays to investigate the diversity, distribution, and activity of diazotrophs residing in Zhangzhou mangrove sediments. Physicochemical assays show that the studied mangrove sediments are typical carbon-rich, sulfur-rich, nitrogen-limited, and low-redox marine ecosystems. These sediments host a wide phylogenetic variety of nitrogenase genes, including groups I-III and VII-VIII. Unexpectedly diverse chemolithoautotrophic taxa including Campylobacteria, Gammaproteobacteria, Zetaproteobacteria, and Thermodesulfovibrionia are the predominant and active nitrogen fixers in the 0-18 cm sediment layer. In contrast, the 18-20 cm layer is dominated by active diazotrophs from the chemolithoautotrophic taxa Desulfobacterota and Halobacteriota. Further analysis of MAGs shows that the main chemolithoautotrophs can fix nitrogen by coupling the oxidation of hydrogen, reduced sulfur, and iron, with the reduction of oxygen, nitrate, and sulfur. Culture experiments further demonstrate that members of chemolithoautotrophic Campylobacteria have the nitrogen-fixing capacity driven by hydrogen and sulfur oxidation. Activity measurements confirm that the diazotrophs inhabiting mangrove sediments preferentially drain energy from diverse reduced inorganic compounds other than from organics. Overall, our results suggest that chemolithoautotrophs rather than heterotrophs are dominant nitrogen fixers in mangrove sediments. This study underscores the significance of chemolithoautotrophs in carbon-dominant ecosystems.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11474244/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141447413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interspecies ecological competition rejuvenates decayed Geobacter electroactive biofilm. 种间生态竞争使腐烂的革兰氏菌电活性生物膜恢复活力。
IF 10.8 1区 环境科学与生态学
ISME Journal Pub Date : 2024-01-08 DOI: 10.1093/ismejo/wrae118
Yin Ye, Lu Zhang, Xiaohui Hong, Man Chen, Xing Liu, Shungui Zhou
{"title":"Interspecies ecological competition rejuvenates decayed Geobacter electroactive biofilm.","authors":"Yin Ye, Lu Zhang, Xiaohui Hong, Man Chen, Xing Liu, Shungui Zhou","doi":"10.1093/ismejo/wrae118","DOIUrl":"10.1093/ismejo/wrae118","url":null,"abstract":"<p><p>Bioelectrochemical systems (BESs) exploit electroactive biofilms (EABs) for promising applications in biosensing, wastewater treatment, energy production, and chemical biosynthesis. However, during the operation of BESs, EABs inevitably decay. Seeking approaches to rejuvenate decayed EABs is critical for the sustainability and practical application of BESs. Prophage induction has been recognized as the primary reason for EAB decay. Herein, we report that introducing a competitive species of Geobacter uraniireducens suspended prophage induction in Geobacter sulfurreducens and thereby rejuvenated the decayed G. sulfurreducens EAB. The transcriptomic profile of G. sulfurreducens demonstrated that the addition of G. uraniireducens significantly affected the expression of metabolism- and stress response system-related genes and in particular suppressed the induction of phage-related genes. Mechanistic analyses revealed that interspecies ecological competition exerted by G. uraniireducens suppressed prophage induction. Our findings not only reveal a novel strategy to rejuvenate decayed EABs, which is significant for the sustainability of BESs, but also provide new knowledge for understanding phage-host interactions from an ecological perspective, with implications for developing therapies to defend against phage attack.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227281/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141447414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rhizobacterial syntrophy between a helper and a beneficiary promotes tomato plant health. 帮助者和受益者之间的根瘤菌合成作用可促进番茄植株的健康。
IF 10.8 1区 环境科学与生态学
ISME Journal Pub Date : 2024-01-08 DOI: 10.1093/ismejo/wrae120
Sang-Moo Lee, Roniya Thapa Magar, Min Kyeong Jung, Hyun Gi Kong, Ju Yeon Song, Joo Hwan Kwon, Minseo Choi, Hyoung Ju Lee, Seung Yeup Lee, Raees Khan, Jihyun F Kim, Seon-Woo Lee
{"title":"Rhizobacterial syntrophy between a helper and a beneficiary promotes tomato plant health.","authors":"Sang-Moo Lee, Roniya Thapa Magar, Min Kyeong Jung, Hyun Gi Kong, Ju Yeon Song, Joo Hwan Kwon, Minseo Choi, Hyoung Ju Lee, Seung Yeup Lee, Raees Khan, Jihyun F Kim, Seon-Woo Lee","doi":"10.1093/ismejo/wrae120","DOIUrl":"10.1093/ismejo/wrae120","url":null,"abstract":"<p><p>Microbial interactions impact the functioning of microbial communities. However, microbial interactions within host-associated communities remain poorly understood. Here, we report that the beneficiary rhizobacterium Niallia sp. RD1 requires the helper Pseudomonas putida H3 for bacterial growth and beneficial interactions with the plant host. In the absence of the helper H3 strain, the Niallia sp. RD1 strain exhibited weak respiration and elongated cell morphology without forming bacterial colonies. A transposon mutant of H3 in a gene encoding succinate-semialdehyde dehydrogenase displayed much attenuated support of RD1 colony formation. Through the subsequent addition of succinate to the media, we found that succinate serves as a public good that supports RD1 growth. Comparative genome analysis highlighted that RD1 lacked the gene for sufficient succinate, suggesting its evolution as a beneficiary of succinate biosynthesis. The syntrophic interaction between RD1 and H3 efficiently protected tomato plants from bacterial wilt and promoted tomato growth. The addition of succinate to the medium restored complex II-dependent respiration in RD1 and facilitated the cultivation of various bacterial isolates from the rhizosphere. Taken together, we delineate energy auxotrophic beneficiaries ubiquitous in the microbial community, and these beneficiaries could benefit host plants with the aid of helpers in the rhizosphere.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253211/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141477901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distinctive chemotactic responses of three marine herbivore protists to DMSP and related compounds. 三种海洋食草原生动物对 DMSP 和相关化合物的独特趋化反应。
IF 10.8 1区 环境科学与生态学
ISME Journal Pub Date : 2024-01-08 DOI: 10.1093/ismejo/wrae130
Queralt Güell-Bujons, Medea Zanoli, Idan Tuval, Albert Calbet, Rafel Simó
{"title":"Distinctive chemotactic responses of three marine herbivore protists to DMSP and related compounds.","authors":"Queralt Güell-Bujons, Medea Zanoli, Idan Tuval, Albert Calbet, Rafel Simó","doi":"10.1093/ismejo/wrae130","DOIUrl":"10.1093/ismejo/wrae130","url":null,"abstract":"<p><p>Marine planktonic predator-prey interactions occur in microscale seascapes, where diffusing chemicals may act either as chemotactic cues that enhance or arrest predation, or as elemental resources that are complementary to prey ingestion. The phytoplankton osmolyte dimethylsulfoniopropionate (DMSP) and its degradation products dimethylsulfide (DMS) and acrylate are pervasive compounds with high chemotactic potential, but there is a longstanding controversy over whether they act as grazing enhancers or deterrents. Here, we investigated the chemotactic responses of three herbivorous dinoflagellates to point-sourced, microscale gradients of dissolved DMSP, DMS, and acrylate. We found no evidence for acrylate being a chemotactic repellent and observed a weak attractor role of DMS. DMSP behaved as a strong chemoattractor whose potential for grazing facilitation through effects on swimming patterns and aggregation depends on the grazer's feeding mode and ability to incorporate DMSP. Our study reveals that predation models will fail to predict grazing impacts unless they incorporate chemotaxis-driven searching and finding of prey.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11283757/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141602008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信