ISME JournalPub Date : 2024-01-08DOI: 10.1093/ismejo/wrae032
Branko Rihtman, Alberto Torcello-Requena, Alevtina Mikhaylina, Richard J Puxty, Martha R J Clokie, Andrew D Millard, David J Scanlan
{"title":"Coordinated transcriptional response to environmental stress by a Synechococcus virus.","authors":"Branko Rihtman, Alberto Torcello-Requena, Alevtina Mikhaylina, Richard J Puxty, Martha R J Clokie, Andrew D Millard, David J Scanlan","doi":"10.1093/ismejo/wrae032","DOIUrl":"10.1093/ismejo/wrae032","url":null,"abstract":"<p><p>Viruses are a major control on populations of microbes. Often, their virulence is examined in controlled laboratory conditions. Yet, in nature, environmental conditions lead to changes in host physiology and fitness that may impart both costs and benefits on viral success. Phosphorus (P) is a major abiotic control on the marine cyanobacterium Synechococcus. Some viruses infecting Synechococcus have acquired, from their host, a gene encoding a P substrate binding protein (PstS), thought to improve virus replication under phosphate starvation. Yet, pstS is uncommon among cyanobacterial viruses. Thus, we asked how infections with viruses lacking PstS are affected by P scarcity. We show that the production of infectious virus particles of such viruses is reduced in low P conditions. However, this reduction in progeny is not caused by impaired phage genome replication, thought to be a major sink for cellular phosphate. Instead, transcriptomic analysis showed that under low P conditions, a PstS-lacking cyanophage increased the expression of a specific gene set that included mazG, hli2, and gp43 encoding a pyrophosphatase, a high-light inducible protein and DNA polymerase, respectively. Moreover, several of the upregulated genes were controlled by the host's phoBR two-component system. We hypothesize that recycling and polymerization of nucleotides liberates free phosphate and thus allows viral morphogenesis, albeit at lower rates than when phosphate is replete or when phages encode pstS. Altogether, our data show how phage genomes, lacking obvious P-stress-related genes, have evolved to exploit their host's environmental sensing mechanisms to coordinate their own gene expression in response to resource limitation.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10976474/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140023167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ISME JournalPub Date : 2024-01-08DOI: 10.1093/ismejo/wrae051
Yanchun Deng, Sa Yang, Li Zhang, Chenxiao Chen, Xuefen Cheng, Chunsheng Hou
{"title":"Chronic bee paralysis virus exploits host antimicrobial peptides and alters gut microbiota composition to facilitate viral infection.","authors":"Yanchun Deng, Sa Yang, Li Zhang, Chenxiao Chen, Xuefen Cheng, Chunsheng Hou","doi":"10.1093/ismejo/wrae051","DOIUrl":"10.1093/ismejo/wrae051","url":null,"abstract":"<p><p>The significance of gut microbiota in regulating animal immune response to viral infection is increasingly recognized. However, how chronic bee paralysis virus (CBPV) exploits host immune to disturb microbiota for its proliferation remains elusive. Through histopathological examination, we discovered that the hindgut harbored the highest level of CBPV, and displayed visible signs of damages. The metagenomic analysis showed that a notable reduction in the levels of Snodgrassella alvi and Lactobacillus apis, and a significant increase in the abundance of the opportunistic pathogens such as Enterobacter hormaechei and Enterobacter cloacae following CBPV infection. Subsequent co-inoculation experiments showed that these opportunistic pathogens facilitated the CBPV proliferation, leading to accelerated mortality in bees and exacerbation of bloated abdomen symptoms after CBPV infection. The expression level of antimicrobial peptide (AMP) was found to be significantly up-regulated by over 1000 times in response to CBPV infection, as demonstrated by subsequent transcriptome and quantitative real-time PCR investigations. In particular, through correlation analysis and a bacteriostatic test revealed that the AMPs did not exhibit any inhibitory effect against the two opportunistic pathogens. However, they did demonstrate inhibitory activity against S. alvi and L. apis. Our findings provide different evidence that the virus infection may stimulate and utilize the host's AMPs to eradicate probiotic species and facilitate the proliferation of opportunistic bacteria. This process weakens the intestinal barrier and ultimately resulting in the typical bloated abdomen.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11014883/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140190314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ISME JournalPub Date : 2024-01-08DOI: 10.1093/ismejo/wrae036
Doaa Higazy, Anh Duc Pham, Coen van Hasselt, Niels Høiby, Lars Jelsbak, Claus Moser, Oana Ciofu
{"title":"In vivo evolution of antimicrobial resistance in a biofilm model of Pseudomonas aeruginosa lung infection.","authors":"Doaa Higazy, Anh Duc Pham, Coen van Hasselt, Niels Høiby, Lars Jelsbak, Claus Moser, Oana Ciofu","doi":"10.1093/ismejo/wrae036","DOIUrl":"10.1093/ismejo/wrae036","url":null,"abstract":"<p><p>The evolution of antimicrobial resistance (AMR) in biofilms has been repeatedly studied by experimental evolution in vitro, but rarely in vivo. The complex microenvironment at the infection site imposes selective pressures on the bacterial biofilms, potentially influencing the development of AMR. We report here the development of AMR in an in vivo mouse model of Pseudomonas aeruginosa biofilm lung infection. The P. aeruginosa embedded in seaweed alginate beads underwent four successive lung infection passages with or without ciprofloxacin (CIP) exposure. The development of CIP resistance was assessed at each passage by population analysis of the bacterial populations recovered from the lungs of CIP-treated and control mice, with subsequent whole-genome sequencing of selected isolates. As inflammation plays a crucial role in shaping the microenvironment at the infection site, its impact was explored through the measurement of cytokine levels in the lung homogenate. A rapid development of AMR was observed starting from the second passage in the CIP-treated mice. Genetic analysis revealed mutations in nfxB, efflux pumps (mexZ), and two-component systems (parS) contribution to CIP resistance. The control group isolates exhibited mutations in the dipA gene, likely associated with biofilm dispersion. In the initial two passages, the CIP-treated group exhibited an elevated inflammatory response compared to the control group. This increase may potentially contribute to the release of mutagenic reactive oxygen species and the development of AMR. In conclusion, this study illustrates the complex relationship between infection, antibiotic treatment, and immune response.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10980832/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140121292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ISME JournalPub Date : 2024-01-08DOI: 10.1093/ismejo/wrae158
Elizabeth Connors, Avishek Dutta, Rebecca Trinh, Natalia Erazo, Srishti Dasarathy, Hugh Ducklow, J L Weissman, Yi-Chun Yeh, Oscar Schofield, Deborah Steinberg, Jed Fuhrman, Jeff S Bowman
{"title":"Microbial community composition predicts bacterial production across ocean ecosystems.","authors":"Elizabeth Connors, Avishek Dutta, Rebecca Trinh, Natalia Erazo, Srishti Dasarathy, Hugh Ducklow, J L Weissman, Yi-Chun Yeh, Oscar Schofield, Deborah Steinberg, Jed Fuhrman, Jeff S Bowman","doi":"10.1093/ismejo/wrae158","DOIUrl":"10.1093/ismejo/wrae158","url":null,"abstract":"<p><p>Microbial ecological functions are an emergent property of community composition. For some ecological functions, this link is strong enough that community composition can be used to estimate the quantity of an ecological function. Here, we apply random forest regression models to compare the predictive performance of community composition and environmental data for bacterial production (BP). Using data from two independent long-term ecological research sites-Palmer LTER in Antarctica and Station SPOT in California-we found that community composition was a strong predictor of BP. The top performing model achieved an R2 of 0.84 and RMSE of 20.2 pmol L-1 hr-1 on independent validation data, outperforming a model based solely on environmental data (R2 = 0.32, RMSE = 51.4 pmol L-1 hr-1). We then operationalized our top performing model, estimating BP for 346 Antarctic samples from 2015 to 2020 for which only community composition data were available. Our predictions resolved spatial trends in BP with significance in the Antarctic (P value = 1 × 10-4) and highlighted important taxa for BP across ocean basins. Our results demonstrate a strong link between microbial community composition and microbial ecosystem function and begin to leverage long-term datasets to construct models of BP based on microbial community composition.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11385589/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141894774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ISME JournalPub Date : 2024-01-08DOI: 10.1093/ismejo/wrae153
Su Ding, F A Bastiaan von Meijenfeldt, Nicole J Bale, Jaap S Sinninghe Damsté, Laura Villanueva
{"title":"Production of structurally diverse sphingolipids by anaerobic marine bacteria in the euxinic Black Sea water column.","authors":"Su Ding, F A Bastiaan von Meijenfeldt, Nicole J Bale, Jaap S Sinninghe Damsté, Laura Villanueva","doi":"10.1093/ismejo/wrae153","DOIUrl":"10.1093/ismejo/wrae153","url":null,"abstract":"<p><p>Microbial lipids, used as taxonomic markers and physiological indicators, have mainly been studied through cultivation. However, this approach is limited due to the scarcity of cultures of environmental microbes, thereby restricting insights into the diversity of lipids and their ecological roles. Addressing this limitation, here we apply metalipidomics combined with metagenomics in the Black Sea, classifying and tentatively identifying 1623 lipid-like species across 18 lipid classes. We discovered over 200 novel, abundant, and structurally diverse sphingolipids in euxinic waters, including unique 1-deoxysphingolipids with long-chain fatty acids and sulfur-containing groups. Sphingolipids were thought to be rare in bacteria and their molecular and ecological functions in bacterial membranes remain elusive. However, genomic analysis focused on sphingolipid biosynthesis genes revealed that members of 38 bacterial phyla in the Black Sea can synthesize sphingolipids, representing a 4-fold increase from previously known capabilities and accounting for up to 25% of the microbial community. These sphingolipids appear to be involved in oxidative stress response, cell wall remodeling, and are associated with the metabolism of nitrogen-containing molecules. Our findings underscore the effectiveness of multi-omics approaches in exploring microbial chemical ecology.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334938/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141903450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ISME JournalPub Date : 2024-01-08DOI: 10.1093/ismejo/wrae164
Daniel Méndez-Sánchez, Anna Schrecengost, Johana Rotterová, Kateřina Koštířová, Roxanne A Beinart, Ivan Čepička
{"title":"Methanogenic symbionts of anaerobic ciliates are host and habitat specific.","authors":"Daniel Méndez-Sánchez, Anna Schrecengost, Johana Rotterová, Kateřina Koštířová, Roxanne A Beinart, Ivan Čepička","doi":"10.1093/ismejo/wrae164","DOIUrl":"10.1093/ismejo/wrae164","url":null,"abstract":"<p><p>The association between anaerobic ciliates and methanogenic archaea has been recognized for over a century. Nevertheless, knowledge of these associations is limited to a few ciliate species, and so the identification of patterns of host-symbiont specificity has been largely speculative. In this study, we integrated microscopy and genetic identification to survey the methanogenic symbionts of 32 free-living anaerobic ciliate species, mainly from the order Metopida. Based on Sanger and Illumina sequencing of the 16S rRNA gene, our results show that a single methanogenic symbiont population, belonging to Methanobacterium, Methanoregula, or Methanocorpusculum, is dominant in each host strain. Moreover, the host's taxonomy (genus and above) and environment (i.e. endobiotic, marine/brackish, or freshwater) are linked with the methanogen identity at the genus level, demonstrating a strong specificity and fidelity in the association. We also established cultures containing artificially co-occurring anaerobic ciliate species harboring different methanogenic symbionts. This revealed that the host-methanogen relationship is stable over short timescales in cultures without evidence of methanogenic symbiont exchanges, although our intraspecific survey indicated that metopids also tend to replace their methanogens over longer evolutionary timescales. Therefore, anaerobic ciliates have adapted a mixed transmission mode to maintain and replace their methanogenic symbionts, allowing them to thrive in oxygen-depleted environments.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378729/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ISME JournalPub Date : 2024-01-08DOI: 10.1093/ismejo/wrae033
Marcel Suleiman, Natalie Le Lay, Francesca Demaria, Boris A Kolvenbach, Mariana S Cretoiu, Owen L Petchey, Alexandre Jousset, Philippe F-X Corvini
{"title":"Pollutant profile complexity governs wastewater removal of recalcitrant pharmaceuticals.","authors":"Marcel Suleiman, Natalie Le Lay, Francesca Demaria, Boris A Kolvenbach, Mariana S Cretoiu, Owen L Petchey, Alexandre Jousset, Philippe F-X Corvini","doi":"10.1093/ismejo/wrae033","DOIUrl":"10.1093/ismejo/wrae033","url":null,"abstract":"<p><p>Organic pollutants are an increasing threat for wildlife and humans. Managing their removal is however complicated by the difficulties in predicting degradation rates. In this work, we demonstrate that the complexity of the pollutant profile, the set of co-existing contaminants, is a major driver of biodegradation in wastewater. We built representative assemblages out of one to five common pharmaceuticals (caffeine, atenolol, paracetamol, ibuprofen, and enalapril) selected along a gradient of biodegradability. We followed their individual removal by wastewater microbial communities. The presence of multichemical background pollution was essential for the removal of recalcitrant molecules such as ibuprofen. High-order interactions between multiple pollutants drove removal efficiency. We explain these interactions by shifts in the microbiome, with degradable molecules such as paracetamol enriching species and pathways involved in the removal of several organic pollutants. We conclude that pollutants should be treated as part of a complex system, with emerging pollutants potentially showing cascading effects and offering leverage to promote bioremediation.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10989296/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139998137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SLC24A-mediated calcium exchange as an indispensable component of the diatom cell density-driven signaling pathway.","authors":"Xuehua Liu, Zhicheng Zuo, Xiujun Xie, Shan Gao, Songcui Wu, Wenhui Gu, Guangce Wang","doi":"10.1093/ismejo/wrae039","DOIUrl":"10.1093/ismejo/wrae039","url":null,"abstract":"<p><p>Diatom bloom is characterized by a rapid increase of population density. Perception of population density and physiological responses can significantly influence their survival strategies, subsequently impacting bloom fate. The population density itself can serve as a signal, which is perceived through chemical signals or chlorophyll fluorescence signals triggered by high cell density, and their intracellular signaling mechanisms remain to be elucidated. In this study, we focused on the model diatom, Phaeodactylum tricornutum, and designed an orthogonal experiment involving varying cell densities and light conditions, to stimulate the release of chemical signals and light-induced chlorophyll fluorescence signals. Utilizing RNA-Seq and Weighted Gene Co-expression Network Analysis, we identified four gene clusters displaying density-dependent expression patterns. Within these, a potential hub gene, PtSLC24A, encoding a Na+/Ca2+ exchanger, was identified. Based on molecular genetics, cellular physiology, computational structural biology, and in situ oceanic data, we propose a potential intracellular signaling mechanism related to cell density in marine diatoms using Ca2+: upon sensing population density signals mediated by chemical cues, the membrane-bound PtSLC24A facilitates the efflux of Ca2+ to maintain specific intracellular calcium levels, allowing the transduction of intracellular density signals, subsequently regulating physiological responses, including cell apoptosis, ultimately affecting algal blooms fate. These findings shed light on the calcium-mediated intracellular signaling mechanism of marine diatoms to changing population densities, and enhances our understanding of diatom bloom dynamics and their ecological implications.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982851/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140066162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ISME JournalPub Date : 2024-01-08DOI: 10.1093/ismejo/wrae052
Jianyang Bai, Zhangqi Zuo, Haonan DuanMu, Meizhen Li, Haojie Tong, Yang Mei, Yiqi Xiao, Kang He, Mingxing Jiang, Shuping Wang, Fei Li
{"title":"Endosymbiont Tremblaya phenacola influences the reproduction of cotton mealybugs by regulating the mechanistic target of rapamycin pathway.","authors":"Jianyang Bai, Zhangqi Zuo, Haonan DuanMu, Meizhen Li, Haojie Tong, Yang Mei, Yiqi Xiao, Kang He, Mingxing Jiang, Shuping Wang, Fei Li","doi":"10.1093/ismejo/wrae052","DOIUrl":"10.1093/ismejo/wrae052","url":null,"abstract":"<p><p>The intricate evolutionary dynamics of endosymbiotic relationships result in unique characteristics among the genomes of symbionts, which profoundly influence host insect phenotypes. Here, we investigated an endosymbiotic system in Phenacoccus solenopsis, a notorious pest of the subfamily Phenacoccinae. The endosymbiont, \"Candidatus Tremblaya phenacola\" (T. phenacola PSOL), persisted throughout the complete life cycle of female hosts and was more active during oviposition, whereas there was a significant decline in abundance after pupation in males. Genome sequencing yielded an endosymbiont genome of 221.1 kb in size, comprising seven contigs and originating from a chimeric arrangement between betaproteobacteria and gammaproteobacteria. A comprehensive analysis of amino acid metabolic pathways demonstrated complementarity between the host and endosymbiont metabolism. Elimination of T. phenacola PSOL through antibiotic treatment significantly decreased P. solenopsis fecundity. Weighted gene coexpression network analysis demonstrated a correlation between genes associated with essential amino acid synthesis and those associated with host meiosis and oocyte maturation. Moreover, altering endosymbiont abundance activated the host mechanistic target of rapamycin pathway, suggesting that changes in the amino acid abundance affected the host reproductive capabilities via this signal pathway. Taken together, these findings demonstrate a mechanism by which the endosymbiont T. phenacola PSOL contributed to high fecundity in P. solenopsis and provide new insights into nutritional compensation and coevolution of the endosymbiotic system.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11014885/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140190371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}