ISME JournalPub Date : 2024-01-08DOI: 10.1093/ismejo/wrae096
Nataliya Teteneva, Ananda Sanches-Medeiros, Victor Sourjik
{"title":"Genome-wide screen of genetic determinants that govern Escherichia coli growth and persistence in lake water.","authors":"Nataliya Teteneva, Ananda Sanches-Medeiros, Victor Sourjik","doi":"10.1093/ismejo/wrae096","DOIUrl":"10.1093/ismejo/wrae096","url":null,"abstract":"<p><p>Although enteric bacteria normally reside within the animal intestine, the ability to persist extraintestinally is an essential part of their overall lifestyle, and it might contribute to transmission between hosts. Despite this potential importance, few genetic determinants of extraintestinal growth and survival have been identified, even for the best-studied model, Escherichia coli. In this work, we thus used a genome-wide library of barcoded transposon insertions to systematically identify functional clusters of genes that are crucial for E. coli fitness in lake water. Our results revealed that inactivation of pathways involved in maintaining outer membrane integrity, nucleotide biosynthesis, and chemotaxis negatively affected E. coli growth or survival in this extraintestinal environment. In contrast, inactivation of another group of genes apparently benefited E. coli growth or persistence in filtered lake water, resulting in higher abundance of these mutants. This group included rpoS, which encodes the general stress response sigma factor, as well as genes encoding several other global transcriptional regulators and RNA chaperones, along with several poorly annotated genes. Based on this co-enrichment, we identified these gene products as novel positive regulators of RpoS activity. We further observed that, despite their enhanced growth, E. coli mutants with inactive RpoS had reduced viability in lake water, and they were not enriched in the presence of the autochthonous microbiota. This highlights the duality of the general stress response pathway for E. coli growth outside the host.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188689/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141318821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ISME JournalPub Date : 2024-01-08DOI: 10.1093/ismejo/wrae126
Citlali Fonseca-García, Dean Pettinga, Andrew Wilson, Joshua R Elmore, Ryan McClure, Jackie Atim, Julie Pedraza, Robert Hutmacher, Halbay Turumtay, Yang Tian, Aymerick Eudes, Henrik V Scheller, Robert G Egbert, Devin Coleman-Derr
{"title":"Defined synthetic microbial communities colonize and benefit field-grown sorghum.","authors":"Citlali Fonseca-García, Dean Pettinga, Andrew Wilson, Joshua R Elmore, Ryan McClure, Jackie Atim, Julie Pedraza, Robert Hutmacher, Halbay Turumtay, Yang Tian, Aymerick Eudes, Henrik V Scheller, Robert G Egbert, Devin Coleman-Derr","doi":"10.1093/ismejo/wrae126","DOIUrl":"10.1093/ismejo/wrae126","url":null,"abstract":"<p><p>The rhizosphere constitutes a dynamic interface between plant hosts and their associated microbial communities. Despite the acknowledged potential for enhancing plant fitness by manipulating the rhizosphere, the engineering of the rhizosphere microbiome through inoculation has posed significant challenges. These challenges are thought to arise from the competitive microbial ecosystem where introduced microbes must survive, and the absence of adaptation to the specific metabolic and environmental demands of the rhizosphere. Here, we engineered a synthetic rhizosphere community (SRC1) with the anticipation that it would exhibit a selective advantage in colonizing the host Sorghum bicolor, thereby potentially fostering its growth. SRC1 was assembled from bacterial isolates identified either for their potential role in community cohesion through network analysis or for their ability to benefit from host-specific exudate compounds. The growth performance of SRC1 was assessed in vitro on solid media, in planta under gnotobiotic laboratory conditions, and in the field. Our findings reveal that SRC1 cohesion is most robust when cultivated in the presence of the plant host under laboratory conditions, with lineages being lost from the community when grown either in vitro or in a native field setting. We establish that SRC1 effectively promotes the growth of both above- and below-ground plant phenotypes in both laboratory and native field contexts. Furthermore, in laboratory conditions, these growth enhancements correlate with the transcriptional dampening of lignin biosynthesis in the host. Collectively, these results underscore the potential utility of synthetic microbial communities for modulating crop performance in controlled and native environments alike.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11410050/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141565019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ISME JournalPub Date : 2024-01-08DOI: 10.1093/ismejo/wrae127
Zhe Pan, Yanhong Chen, Mi Zhou, Tim A McAllister, Tom N Mcneilly, Le Luo Guan
{"title":"Linking active rectal mucosa-attached microbiota to host immunity reveals its role in host-pathogenic STEC O157 interactions.","authors":"Zhe Pan, Yanhong Chen, Mi Zhou, Tim A McAllister, Tom N Mcneilly, Le Luo Guan","doi":"10.1093/ismejo/wrae127","DOIUrl":"10.1093/ismejo/wrae127","url":null,"abstract":"<p><p>The rectal-anal junction (RAJ) is the major colonization site of Shiga toxin-producing Escherichia coli (STEC) O157 in beef cattle, leading to transmission of this foodborne pathogen from farms to food chains. To date, there is limited understanding regarding whether the mucosa-attached microbiome has a profound impact on host-STEC interactions. In this study, the active RAJ mucosa-attached microbiota and its potential role in host immunity-STEC commensal interactions were investigated using RAJ mucosal biopsies collected from calves orally challenged with two STEC O157 strains with or without functional stx2a (stx2a+ or stx2a-). The results revealed that shifts of microbial diversity, topology, and assembly patterns were subjected to stx2a production post-challenge and Paeniclostridium and Gallibacterium were the keystone taxa for both microbial interactions and assembly. Additional mucosal transcriptome profiling showed stx2a-dependent host immune responses (i.e. B- and T-cell signaling and antigen processing and presentation) post-challenge. Further integrated analysis revealed that mucosa-attached beneficial microbes (i.e. Provotella, Faecalibacterium, and Dorea) interacted with host immune genes pre-challenge to maintain host homeostasis; however, opportunistic pathogenic microbes (i.e. Paeniclostridium) could interact with host immune genes after the STEC O157 colonization and interactions were stx2a-dependent. Furthermore, predicted bacterial functions involved in pathogen (O157 and Paeniclostridium) colonization and metabolism were related to host immunity. These findings suggest that during pathogen colonization, host-microbe interactions could shift from beneficial to opportunistic pathogenic bacteria driven and be dependent on the production of particular virulence factors, highlighting the potential regulatory role of mucosa-attached microbiota in affecting pathogen-commensal host interactions in calves with STEC O157 infection.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304501/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141565021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Anaerobic ammonium oxidation coupled to iron(III) reduction catalyzed by a lithoautotrophic nitrate-reducing iron(II) oxidizing enrichment culture.","authors":"Hong-Bin Zhang, He-Fei Wang, Jia-Bo Liu, Zhen Bi, Ruo-Fei Jin, Tian Tian","doi":"10.1093/ismejo/wrae149","DOIUrl":"10.1093/ismejo/wrae149","url":null,"abstract":"<p><p>The last two decades have seen nitrogen/iron-transforming bacteria at the forefront of new biogeochemical discoveries, such as anaerobic ammonium oxidation coupled to ferric iron reduction (feammox) and lithoautotrophic nitrate-reducing ferrous iron-oxidation (NRFeOx). These emerging findings continue to expand our knowledge of the nitrogen/iron cycle in nature and also highlight the need to re-understand the functional traits of the microorganisms involved. Here, as a proof-of-principle, we report compelling evidence for the capability of an NRFeOx enrichment culture to catalyze the feammox process. Our results demonstrate that the NRFeOx culture predominantly oxidizes NH4+ to nitrogen gas, by reducing both chelated nitrilotriacetic acid (NTA)-Fe(III) and poorly soluble Fe(III)-bearing minerals (γ-FeOOH) at pH 4.0 and 8.0, respectively. In the NRFeOx culture, Fe(II)-oxidizing bacteria of Rhodanobacter and Fe(III)-reducing bacteria of unclassified_Acidobacteriota coexisted. Their relative abundances were dynamically regulated by the supplemented iron sources. Metagenomic analysis revealed that the NRFeOx culture contained a complete set of denitrifying genes along with hao genes for ammonium oxidation. Additionally, numerous genes encoding extracellular electron transport-associated proteins or their homologs were identified, which facilitated the reduction of extracellular iron by this culture. More broadly, this work lightens the unexplored potential of specific microbial groups in driving nitrogen transformation through multiple pathways and highlights the essential role of microbial iron metabolism in the integral biogeochemical nitrogen cycle.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366258/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ISME JournalPub Date : 2024-01-08DOI: 10.1093/ismejo/wrae033
Marcel Suleiman, Natalie Le Lay, Francesca Demaria, Boris A Kolvenbach, Mariana S Cretoiu, Owen L Petchey, Alexandre Jousset, Philippe F-X Corvini
{"title":"Pollutant profile complexity governs wastewater removal of recalcitrant pharmaceuticals.","authors":"Marcel Suleiman, Natalie Le Lay, Francesca Demaria, Boris A Kolvenbach, Mariana S Cretoiu, Owen L Petchey, Alexandre Jousset, Philippe F-X Corvini","doi":"10.1093/ismejo/wrae033","DOIUrl":"10.1093/ismejo/wrae033","url":null,"abstract":"<p><p>Organic pollutants are an increasing threat for wildlife and humans. Managing their removal is however complicated by the difficulties in predicting degradation rates. In this work, we demonstrate that the complexity of the pollutant profile, the set of co-existing contaminants, is a major driver of biodegradation in wastewater. We built representative assemblages out of one to five common pharmaceuticals (caffeine, atenolol, paracetamol, ibuprofen, and enalapril) selected along a gradient of biodegradability. We followed their individual removal by wastewater microbial communities. The presence of multichemical background pollution was essential for the removal of recalcitrant molecules such as ibuprofen. High-order interactions between multiple pollutants drove removal efficiency. We explain these interactions by shifts in the microbiome, with degradable molecules such as paracetamol enriching species and pathways involved in the removal of several organic pollutants. We conclude that pollutants should be treated as part of a complex system, with emerging pollutants potentially showing cascading effects and offering leverage to promote bioremediation.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10989296/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139998137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ISME JournalPub Date : 2024-01-08DOI: 10.1093/ismejo/wrae219
Raquel Peixoto, Christian R Voolstra, Lisa Y Stein, Philip Hugenholtz, Joana Falcao Salles, Shady A Amin, Max Häggblom, Ann Gregory, Thulani P Makhalanyane, Fengping Wang, Nadège Adoukè Agbodjato, Yinzhao Wang, Nianzhi Jiao, Jay T Lennon, Antonio Ventosa, Patrik M Bavoil, Virginia Miller, Jack A Gilbert
{"title":"Microbial solutions must be deployed against climate catastrophe.","authors":"Raquel Peixoto, Christian R Voolstra, Lisa Y Stein, Philip Hugenholtz, Joana Falcao Salles, Shady A Amin, Max Häggblom, Ann Gregory, Thulani P Makhalanyane, Fengping Wang, Nadège Adoukè Agbodjato, Yinzhao Wang, Nianzhi Jiao, Jay T Lennon, Antonio Ventosa, Patrik M Bavoil, Virginia Miller, Jack A Gilbert","doi":"10.1093/ismejo/wrae219","DOIUrl":"10.1093/ismejo/wrae219","url":null,"abstract":"","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":"18 1","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552515/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142631859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ISME JournalPub Date : 2024-01-08DOI: 10.1093/ismejo/wrae090
Gao Chen, Yi Yang, Jun Yan, Frank E Löffler
{"title":"Metabolite cross-feeding enables concomitant catabolism of chlorinated methanes and chlorinated ethenes in synthetic microbial assemblies.","authors":"Gao Chen, Yi Yang, Jun Yan, Frank E Löffler","doi":"10.1093/ismejo/wrae090","DOIUrl":"10.1093/ismejo/wrae090","url":null,"abstract":"<p><p>Isolate studies have been a cornerstone for unraveling metabolic pathways and phenotypical (functional) features. Biogeochemical processes in natural and engineered ecosystems are generally performed by more than a single microbe and often rely on mutualistic interactions. We demonstrate the rational bottom-up design of synthetic, interdependent co-cultures to achieve concomitant utilization of chlorinated methanes as electron donors and organohalogens as electron acceptors. Specialized anaerobes conserve energy from the catabolic conversion of chloromethane or dichloromethane to formate, H2, and acetate, compounds that the organohalide-respiring bacterium Dehalogenimonas etheniformans strain GP requires to utilize cis-1,2-dichloroethenene and vinyl chloride as electron acceptors. Organism-specific qPCR enumeration matched the growth of individual dechlorinators to the respective functional (i.e. dechlorination) traits. The metabolite cross-feeding in the synthetic (co-)cultures enables concomitant utilization of chlorinated methanes (i.e. chloromethane and dichloromethane) and chlorinated ethenes (i.e. cis-1,2-dichloroethenene and vinyl chloride) without the addition of an external electron donor (i.e. formate and H2). The findings illustrate that naturally occurring chlorinated C1 compounds can sustain anaerobic food webs, an observation with implications for the development of interdependent, mutualistic communities, the sustenance of microbial life in oligotrophic and energy-deprived environments, and the fate of chloromethane/dichloromethane and chlorinated electron acceptors (e.g. chlorinated ethenes) in pristine environments and commingled contaminant plumes.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11170663/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141181371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Role of Type VI secretion system in pathogenic remodeling of host gut microbiota during Aeromonas veronii infection.","authors":"Xiaoli Jiang, Hanzeng Li, Jiayue Ma, Hong Li, Xiang Ma, Yanqiong Tang, Juanjuan Li, Xue Chi, Yong Deng, Sheng Zeng, Zhu Liu","doi":"10.1093/ismejo/wrae053","DOIUrl":"10.1093/ismejo/wrae053","url":null,"abstract":"<p><p>Intestinal microbial disturbance is a direct cause of host disease. The bacterial Type VI secretion system (T6SS) often plays a crucial role in the fitness of pathogenic bacteria by delivering toxic effectors into target cells. However, its impact on the gut microbiota and host pathogenesis is poorly understood. To address this question, we characterized a new T6SS in the pathogenic Aeromonas veronii C4. First, we validated the secretion function of the core machinery of A. veronii C4 T6SS. Second, we found that the pathogenesis and colonization of A. veronii C4 is largely dependent on its T6SS. The effector secretion activity of A. veronii C4 T6SS not only provides an advantage in competition among bacteria in vitro, but also contributes to occupation of an ecological niche in the nutritionally deficient and anaerobic environment of the host intestine. Metagenomic analysis showed that the T6SS directly inhibits or eliminates symbiotic strains from the intestine, resulting in dysregulated gut microbiome homeostasis. In addition, we identified three unknown effectors, Tse1, Tse2, and Tse3, in the T6SS, which contribute to T6SS-mediated bacterial competition and pathogenesis by impairing targeted cell integrity. Our findings highlight that T6SS can remodel the host gut microbiota by intricate interplay between T6SS-mediated bacterial competition and altered host immune responses, which synergistically promote pathogenesis of A. veronii C4. Therefore, this newly characterized T6SS could represent a general interaction mechanism between the host and pathogen, and may offer a potential therapeutic target for controlling bacterial pathogens.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11014884/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140295078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ISME JournalPub Date : 2024-01-08DOI: 10.1093/ismejo/wrae082
Wei Li, David Baliu-Rodriguez, Sanduni H Premathilaka, Sharmila I Thenuwara, Jeffrey A Kimbrel, Ty J Samo, Christina Ramon, Erik Anders Kiledal, Sara R Rivera, Jenan Kharbush, Dragan Isailovic, Peter K Weber, Gregory J Dick, Xavier Mayali
{"title":"Microbiome processing of organic nitrogen input supports growth and cyanotoxin production of Microcystis aeruginosa cultures.","authors":"Wei Li, David Baliu-Rodriguez, Sanduni H Premathilaka, Sharmila I Thenuwara, Jeffrey A Kimbrel, Ty J Samo, Christina Ramon, Erik Anders Kiledal, Sara R Rivera, Jenan Kharbush, Dragan Isailovic, Peter K Weber, Gregory J Dick, Xavier Mayali","doi":"10.1093/ismejo/wrae082","DOIUrl":"10.1093/ismejo/wrae082","url":null,"abstract":"<p><p>Nutrient-induced blooms of the globally abundant freshwater toxic cyanobacterium Microcystis cause worldwide public and ecosystem health concerns. The response of Microcystis growth and toxin production to new and recycled nitrogen (N) inputs and the impact of heterotrophic bacteria in the Microcystis phycosphere on these processes are not well understood. Here, using microbiome transplant experiments, cyanotoxin analysis, and nanometer-scale stable isotope probing to measure N incorporation and exchange at single cell resolution, we monitored the growth, cyanotoxin production, and microbiome community structure of several Microcystis strains grown on amino acids or proteins as the sole N source. We demonstrate that the type of organic N available shaped the microbial community associated with Microcystis, and external organic N input led to decreased bacterial colonization of Microcystis colonies. Our data also suggest that certain Microcystis strains could directly uptake amino acids, but with lower rates than heterotrophic bacteria. Toxin analysis showed that biomass-specific microcystin production was not impacted by N source (i.e. nitrate, amino acids, or protein) but rather by total N availability. Single-cell isotope incorporation revealed that some bacterial communities competed with Microcystis for organic N, but other communities promoted increased N uptake by Microcystis, likely through ammonification or organic N modification. Our laboratory culture data suggest that organic N input could support Microcystis blooms and toxin production in nature, and Microcystis-associated microbial communities likely play critical roles in this process by influencing cyanobacterial succession through either decreasing (via competition) or increasing (via biotransformation) N availability, especially under inorganic N scarcity.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11126159/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140892844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}