木霉元蛋白质组反映了不同海洋区域资源可用性的差异影响。

IF 10.8 1区 环境科学与生态学 Q1 ECOLOGY
Hanna S Anderson, Kyle R Frischkorn, Sheean T Haley, Sonya T Dyhrman
{"title":"木霉元蛋白质组反映了不同海洋区域资源可用性的差异影响。","authors":"Hanna S Anderson, Kyle R Frischkorn, Sheean T Haley, Sonya T Dyhrman","doi":"10.1093/ismejo/wraf120","DOIUrl":null,"url":null,"abstract":"<p><p>The diazotroph Trichodesmium is an important contributor to marine dinitrogen fixation, supplying nitrogen to phytoplankton in typically nitrogen-limited ocean regions. Identifying how iron and phosphorus influence Trichodesmium activity and biogeography is an ongoing area of study, where predicting patterns of resource stress is complicated by the uncertain bioavailability of organically complexed iron and phosphorus. Here, a comparison of 26 metaproteomes from picked Trichodesmium colonies identified significantly different patterns between three ocean regions: the western tropical South Pacific, the western North Atlantic, and the North Pacific Subtropical Gyre. Trichodesmium KEGG submodule signals differed significantly across regions, and vector fitting showed that dissolved iron, dissolved inorganic phosphorus, and temperature significantly correlated with regional metaproteome patterns. Patterns of iron and phosphorus stress marker proteins previously validated in culture studies showed significant enrichment of a phosphorus stress signal in the western North Atlantic and an iron stress signal in the North Pacific. Populations in the western tropical South Pacific appeared to modulate their proteomes in response to both dissolved iron and dissolved inorganic phosphorus bioavailability, with significant enrichment of iron and phosphorus stress marker proteins, concomitant proteome restructuring, and significant decreases in the relative abundance of the dinitrogen fixation protein, NifH. These patterns recapitulate established regional patterns of resource stress on phytoplankton communities. Evaluating community stress patterns may therefore predict resource controls on diazotroph biogeography. These data highlight how Trichodesmium modulates its metabolism in the field and provide an opportunity to more accurately constrain controls on Trichodesmium biogeography and dinitrogen fixation.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trichodesmium metaproteomes reflect the differential influence of resource availability across ocean regions.\",\"authors\":\"Hanna S Anderson, Kyle R Frischkorn, Sheean T Haley, Sonya T Dyhrman\",\"doi\":\"10.1093/ismejo/wraf120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The diazotroph Trichodesmium is an important contributor to marine dinitrogen fixation, supplying nitrogen to phytoplankton in typically nitrogen-limited ocean regions. Identifying how iron and phosphorus influence Trichodesmium activity and biogeography is an ongoing area of study, where predicting patterns of resource stress is complicated by the uncertain bioavailability of organically complexed iron and phosphorus. Here, a comparison of 26 metaproteomes from picked Trichodesmium colonies identified significantly different patterns between three ocean regions: the western tropical South Pacific, the western North Atlantic, and the North Pacific Subtropical Gyre. Trichodesmium KEGG submodule signals differed significantly across regions, and vector fitting showed that dissolved iron, dissolved inorganic phosphorus, and temperature significantly correlated with regional metaproteome patterns. Patterns of iron and phosphorus stress marker proteins previously validated in culture studies showed significant enrichment of a phosphorus stress signal in the western North Atlantic and an iron stress signal in the North Pacific. Populations in the western tropical South Pacific appeared to modulate their proteomes in response to both dissolved iron and dissolved inorganic phosphorus bioavailability, with significant enrichment of iron and phosphorus stress marker proteins, concomitant proteome restructuring, and significant decreases in the relative abundance of the dinitrogen fixation protein, NifH. These patterns recapitulate established regional patterns of resource stress on phytoplankton communities. Evaluating community stress patterns may therefore predict resource controls on diazotroph biogeography. These data highlight how Trichodesmium modulates its metabolism in the field and provide an opportunity to more accurately constrain controls on Trichodesmium biogeography and dinitrogen fixation.</p>\",\"PeriodicalId\":50271,\"journal\":{\"name\":\"ISME Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISME Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/ismejo/wraf120\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf120","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

重氮营养菌Trichodesmium是海洋二氮固定的重要贡献者,在典型的氮限制海洋地区为浮游植物提供氮。确定铁和磷如何影响木霉活性和生物地理学是一个正在进行的研究领域,其中预测资源压力模式因有机络合铁和磷的生物可利用性不确定而变得复杂。在这里,对从采摘的毛菌菌落中提取的26个超蛋白质组进行比较,发现了三个海洋区域之间显著不同的模式:热带南太平洋西部、北大西洋西部和北太平洋亚热带环流。载体拟合显示,溶解铁、溶解无机磷和温度与区域元蛋白质组模式显著相关。先前在培养研究中验证的铁和磷胁迫标记蛋白模式表明,北大西洋西部的磷胁迫信号和北太平洋的铁胁迫信号显著富集。热带南太平洋西部的种群似乎调节了蛋白质组,以响应溶解铁和溶解无机磷的生物利用度,铁和磷胁迫标记蛋白显著富集,伴随蛋白质组重组,二氮固定蛋白NifH的相对丰度显著降低。这些格局概括了浮游植物群落资源压力的区域格局。因此,评价群落应激模式可以预测重氮营养生物地理资源控制。这些数据突出了木霉在野外如何调节其代谢,并为更准确地限制对木霉生物地理和二氮固定的控制提供了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trichodesmium metaproteomes reflect the differential influence of resource availability across ocean regions.

The diazotroph Trichodesmium is an important contributor to marine dinitrogen fixation, supplying nitrogen to phytoplankton in typically nitrogen-limited ocean regions. Identifying how iron and phosphorus influence Trichodesmium activity and biogeography is an ongoing area of study, where predicting patterns of resource stress is complicated by the uncertain bioavailability of organically complexed iron and phosphorus. Here, a comparison of 26 metaproteomes from picked Trichodesmium colonies identified significantly different patterns between three ocean regions: the western tropical South Pacific, the western North Atlantic, and the North Pacific Subtropical Gyre. Trichodesmium KEGG submodule signals differed significantly across regions, and vector fitting showed that dissolved iron, dissolved inorganic phosphorus, and temperature significantly correlated with regional metaproteome patterns. Patterns of iron and phosphorus stress marker proteins previously validated in culture studies showed significant enrichment of a phosphorus stress signal in the western North Atlantic and an iron stress signal in the North Pacific. Populations in the western tropical South Pacific appeared to modulate their proteomes in response to both dissolved iron and dissolved inorganic phosphorus bioavailability, with significant enrichment of iron and phosphorus stress marker proteins, concomitant proteome restructuring, and significant decreases in the relative abundance of the dinitrogen fixation protein, NifH. These patterns recapitulate established regional patterns of resource stress on phytoplankton communities. Evaluating community stress patterns may therefore predict resource controls on diazotroph biogeography. These data highlight how Trichodesmium modulates its metabolism in the field and provide an opportunity to more accurately constrain controls on Trichodesmium biogeography and dinitrogen fixation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ISME Journal
ISME Journal 环境科学-生态学
CiteScore
22.10
自引率
2.70%
发文量
171
审稿时长
2.6 months
期刊介绍: The ISME Journal covers the diverse and integrated areas of microbial ecology. We encourage contributions that represent major advances for the study of microbial ecosystems, communities, and interactions of microorganisms in the environment. Articles in The ISME Journal describe pioneering discoveries of wide appeal that enhance our understanding of functional and mechanistic relationships among microorganisms, their communities, and their habitats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信