ISME Journal最新文献

筛选
英文 中文
Laminarin stimulates single cell rates of sulfate reduction whereas oxygen inhibits transcriptomic activity in coastal marine sediment. 层压蛋白刺激单细胞硫酸盐还原速率,而氧抑制沿海海洋沉积物的转录组活性。
IF 10.8 1区 环境科学与生态学
ISME Journal Pub Date : 2025-01-02 DOI: 10.1093/ismejo/wraf042
Melody R Lindsay, Timothy D'Angelo, Elizabeth Goodell, Jacob H Munson-McGee, Melissa Herring, Michael Budner, Julia M Brown, Gregory S Gavelis, Corianna Mascena, Laura C Lubelczyk, Nicole J Poulton, Ramunas Stepanauskas, Beth N Orcutt, David Emerson
{"title":"Laminarin stimulates single cell rates of sulfate reduction whereas oxygen inhibits transcriptomic activity in coastal marine sediment.","authors":"Melody R Lindsay, Timothy D'Angelo, Elizabeth Goodell, Jacob H Munson-McGee, Melissa Herring, Michael Budner, Julia M Brown, Gregory S Gavelis, Corianna Mascena, Laura C Lubelczyk, Nicole J Poulton, Ramunas Stepanauskas, Beth N Orcutt, David Emerson","doi":"10.1093/ismejo/wraf042","DOIUrl":"10.1093/ismejo/wraf042","url":null,"abstract":"<p><p>The chemical cycles carried out by bacteria and archaea living in coastal sediments are vital aspects of benthic ecology. These ecosystems are subject to physical disruption, which may allow for increased respiration and complex carbon consumption-impacting chemical cycling in this environment often thought to be a terminal place of deposition. We use the redox-enzyme sensitive probe RedoxSensor Green to measure rates of electron transfer physiology in individual sulfate reducer cells residing in anoxic sediment, subjected to transient exposure of oxygen and laminarin. We use index fluorescence activated cell sorting and single cell genomics sequencing to link those measurements to genomes of respiring cells. We measure per-cell sulfate reduction rates in marine sediments (0.01-4.7 fmol SO42- cell-1 h-1) and determine that cells within the Chloroflexota phylum are the most active in respiration. Chloroflexota respiration activity is also stimulated with the addition of laminarin, even in marine sediments already rich in organic matter. Evaluating metatranscriptomic data alongside this respiration-based technique, Chloroflexota genomes encode laminarinases indicating a likely ability to degrade laminarin. We also provide evidence that abundant Patescibacteria cells do not use electron transport pathways for energy, and instead likely carry out fermentation of polysaccharides. There is a decoupling of respiration-related activity rates from transcription, as respiration rates increase while transcription decreases with oxygen exposure. Overall, we reveal an active community of respiring Chloroflexota that cycles sulfate at potential rates of 23-40 nmol h-1 per cm3 sediment in incubation settings, and non-respiratory Patescibacteria that can cycle complex polysaccharides.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919646/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143588029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-streamlined SAR202 bacteria are widely present and active in the euphotic ocean. 基因组流线型SAR202细菌广泛存在并活跃于嗜光海洋中。
IF 10.8 1区 环境科学与生态学
ISME Journal Pub Date : 2025-01-02 DOI: 10.1093/ismejo/wraf049
Changfei He, Michael Gonsior, Jihua Liu, Nianzhi Jiao, Feng Chen
{"title":"Genome-streamlined SAR202 bacteria are widely present and active in the euphotic ocean.","authors":"Changfei He, Michael Gonsior, Jihua Liu, Nianzhi Jiao, Feng Chen","doi":"10.1093/ismejo/wraf049","DOIUrl":"10.1093/ismejo/wraf049","url":null,"abstract":"<p><p>SAR202 bacteria are a diverse group of bacteria in the ocean. The SAR202 lineages dominate the bacterial community and evolve specialized metabolisms for oxidizing recalcitrant organic compounds in the dark ocean. SAR202 bacteria are also present in the euphotic oceans; however, their ecological roles and metabolic potential remain poorly understood. In this study, we collected 392 non-redundant metagenome-assembled genomes from different oceans, with 18% of these SAR202 genomes characterized by small genome sizes (<2 Mbp), low GC content (<40%), and high gene density. The 70 genome-streamlined SAR202 bacteria constitute more than an average of 90% of SAR202 in the euphotic zone and exhibit streamlined metabolic features compared to the dark ocean SAR202. Genome-streamlined SAR202 is distributed in many major SAR202 lineages (i.e. I, II, III, and VI). Phylogenomic analysis shows that the genome-streamlined SAR202 clades diverged from the non-genome-streamlined SAR202 lineages and evolved independently within the same clades. Certain genes are enriched in genome-streamlined SAR202, such as proteorhodopsin genes and the coding genes of major facilitator superfamily transporters, nucleoside transporters, and deoxyribodipyrimidine photo-lyase, indicating their adaptation to sunlit oligotrophic water. A detailed comparison between genome-streamlined SAR202 and non-genome-streamlined SAR202 was made to illustrate their distinct niche distribution and metabolic buildup. In addition, the metatranscriptomic analysis supports that genome-streamlined SAR202 bacteria are active in the upper ocean. This study represents a systematic study of streamlined SAR202 bacteria that occupy the euphotic ocean and provides a comprehensive view of the ecological roles of SAR202 bacteria in the ocean.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11994032/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143804519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Altered rhizosphere microbiome composition associated with B-subgenome cultivars of diploid and triploid banana plants. 二倍体和三倍体香蕉b亚基因组品种根际微生物组组成的改变
IF 1 1区 环境科学与生态学
ISME Journal Pub Date : 2025-01-02 DOI: 10.1093/ismejo/wraf190
Daniella Gat, Sofia Maite Arellano, Navot Galpaz, Elisa Korenblum
{"title":"Altered rhizosphere microbiome composition associated with B-subgenome cultivars of diploid and triploid banana plants.","authors":"Daniella Gat, Sofia Maite Arellano, Navot Galpaz, Elisa Korenblum","doi":"10.1093/ismejo/wraf190","DOIUrl":"10.1093/ismejo/wraf190","url":null,"abstract":"<p><p>Plant genetic variation affects root phenotype and exudate composition, making it a pivotal factor in host-specific rhizosphere effects. Here we compare the rhizosphere microbiome of banana (Musa spp.) diploid cultivars (AA and BB), triploid cultivars derived from genome hybridizations into autotriploid cultivars (AAA), and various allotriploid cultivars (AAB and ABB) grown under field conditions to assess the influence of genome and subgenome type on the rhizosphere microbial community. Our study revealed that rhizosphere microbiomes of banana plants are significantly affected by banana genome type, presence/absence of the B-subgenome, and cultivar. Moreover, host selection strength in the assembly of the rhizosphere microbiome (i.e. rhizosphere effect) of B-subgenome-bearing banana was significantly greater than that of A-subgenome cultivars, and their rhizosphere microbial networks differed in hub membership, clustering, and node centrality measures. Thus, banana plants assemble different microbiomes in the rhizosphere according to their subgenome type. These results lay the groundwork for linking plant functional genomics and rhizosphere microbiome assembly.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":"19 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448422/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145088021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial symbiont replacement in a vertically transmitted plant symbiosis reveals a role for microbe-microbe interactions in enforcing specificity. 垂直传播植物共生中的人工共生替换揭示了微生物-微生物相互作用在加强特异性中的作用。
IF 1 1区 环境科学与生态学
ISME Journal Pub Date : 2025-01-02 DOI: 10.1093/ismejo/wraf177
Léa Ninzatti, Thibault G Sana, Tessa Acar, Sandra Moreau, Marie-Françoise Jardinaud, Guillaume Marti, Olivier Coen, Aurelien L Carlier
{"title":"Artificial symbiont replacement in a vertically transmitted plant symbiosis reveals a role for microbe-microbe interactions in enforcing specificity.","authors":"Léa Ninzatti, Thibault G Sana, Tessa Acar, Sandra Moreau, Marie-Françoise Jardinaud, Guillaume Marti, Olivier Coen, Aurelien L Carlier","doi":"10.1093/ismejo/wraf177","DOIUrl":"10.1093/ismejo/wraf177","url":null,"abstract":"<p><p>Some plants engage in permanent, vertically transmitted symbioses with bacteria. Often, these bacteria are hosted extracellularly within structures on the leaves, where they produce specialized bioactive metabolites that benefit their host. These associations are highly specific, with one plant species associating with a single bacterial species, but little is known about how these symbioses originate and how specificity is maintained. In this study, we show that the symbiotic association between a wild yam and a bacterium can be manipulated experimentally and that bacteria-free plants are open to colonization by environmental bacteria. Through metabolic profiling, we show that the endophytic niche is rich in organic acids and intermediates of the tricarboxylic acid cycle cycle. Environmental bacteria capable of utilizing these acids, such as the soil bacterium Pseudomonas putida, readily colonize aposymbiotic plants. However, successful colonization is contingent upon the absence of the vertically transmitted symbiont or the impairment of its type VI secretion system. Unexpectedly for a vertically transmitted symbiosis, these findings suggest that microbe-microbe interactions, including antagonism, may play a crucial role in maintaining the specificity of an association. However, low transmission rates of synthetic symbionts provide evidence that transmission barriers or bottlenecks may still occur, further enforcing partner fidelity. Together, these results highlight the complexity of mechanisms underlying mutualistic associations, and provide insights into the evolution of bacterial leaf symbiosis.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12411853/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144876571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environment-mediated interactions cause an externalized and collective memory in bacteria. 环境介导的相互作用引起细菌的外化和集体记忆。
IF 1 1区 环境科学与生态学
ISME Journal Pub Date : 2025-01-02 DOI: 10.1093/ismejo/wraf173
Shubham Gajrani, Xiaozhou Ye, Christoph Ratzke
{"title":"Environment-mediated interactions cause an externalized and collective memory in bacteria.","authors":"Shubham Gajrani, Xiaozhou Ye, Christoph Ratzke","doi":"10.1093/ismejo/wraf173","DOIUrl":"10.1093/ismejo/wraf173","url":null,"abstract":"<p><p>Bacteria usually live in complex communities interacting with many other microbial species. These interactions determine who can persist in a community and how the overall community forms and functions. Bacteria often exert interactions by chemically changing the environment, like taking up nutrients or producing toxins. These environmental changes can persist over time. We show here that such lasting environmental changes can cause a \"memory effect\" where current growth conditions alter interaction outcomes in the future. This memory is only stored in the environment and not inside bacterial cells. Only the collective effort of many bacteria can build up this memory, making it an emergent property of bacterial populations. This externalized and collective memory can also impact the assembly of more complex communities and lead to different final compositions depending on the system's past. Overall, we show that to understand interaction outcomes fully, we have to consider not only the interacting species and abiotic conditions but also the system's history.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12456175/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144838471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pacmanvirus isolated from the Lost City hydrothermal field extends the concept of transpoviron beyond the family Mimiviridae. 从失落之城热液区分离的Pacmanvirus将转座子的概念扩展到迷你病毒科之外。
IF 10.8 1区 环境科学与生态学
ISME Journal Pub Date : 2025-01-02 DOI: 10.1093/ismejo/wraf002
Sébastien Santini, Audrey Lartigue, Jean-Marie Alempic, Yohann Couté, Lucid Belmudes, William J Brazelton, Susan Q Lang, Jean-Michel Claverie, Matthieu Legendre, Chantal Abergel
{"title":"Pacmanvirus isolated from the Lost City hydrothermal field extends the concept of transpoviron beyond the family Mimiviridae.","authors":"Sébastien Santini, Audrey Lartigue, Jean-Marie Alempic, Yohann Couté, Lucid Belmudes, William J Brazelton, Susan Q Lang, Jean-Michel Claverie, Matthieu Legendre, Chantal Abergel","doi":"10.1093/ismejo/wraf002","DOIUrl":"10.1093/ismejo/wraf002","url":null,"abstract":"<p><p>The microbial sampling of submarine hydrothermal vents remains challenging, with even fewer studies focused on viruses. Here we report what is to our knowledge the first isolation of a eukaryotic virus from the Lost City hydrothermal field, by co-culture with the laboratory host Acanthamoeba castellanii. This virus, named pacmanvirus lostcity, is closely related to previously isolated pacmanviruses (strains A23 and S19), clustering in a divergent clade within the long-established family Asfarviridae. The icosahedral particles of this virus are 200 nm in diameter, with an electron-dense core surrounded by an inner membrane. The viral genome of 395 708 bp (33% G + C) has been predicted to encode 473 proteins. However, besides these standard properties, pacmanvirus lostcity was found to be associated with a new type of selfish genetic element, 7 kb in length, whose architecture and gene content are reminiscent of those of transpovirons, hitherto specific to the family Mimiviridae. As in previously described transpovirons, this selfishg genetic element propagates as an episome within its host virus particles and exhibits partial recombination with its genome. In addition, an unrelated episome with a length of 2 kb was also found to be associated with pacmanvirus lostcity. Together, the transpoviron and the 2-kb episome might participate in exchanges between pacmanviruses and other DNA virus families. It remains to be elucidated if the presence of these mobile genetic elements is restricted to pacmanviruses or was simply overlooked in other members of the Asfarviridae.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11788076/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142958163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-term climate establishes functional legacies by altering microbial traits. 长期气候通过改变微生物特性来建立功能性遗产。
IF 10.8 1区 环境科学与生态学
ISME Journal Pub Date : 2025-01-02 DOI: 10.1093/ismejo/wraf005
Caitlin M Broderick, Gian Maria Niccolò Benucci, Luciana Ruggiero Bachega, Gabriel D Miller, Sarah E Evans, Christine V Hawkes
{"title":"Long-term climate establishes functional legacies by altering microbial traits.","authors":"Caitlin M Broderick, Gian Maria Niccolò Benucci, Luciana Ruggiero Bachega, Gabriel D Miller, Sarah E Evans, Christine V Hawkes","doi":"10.1093/ismejo/wraf005","DOIUrl":"10.1093/ismejo/wraf005","url":null,"abstract":"<p><p>Long-term climate history can influence rates of soil carbon cycling but the microbial traits underlying these legacy effects are not well understood. Legacies may result if historical climate differences alter the traits of soil microbial communities, particularly those associated with carbon cycling and stress tolerance. However, it is also possible that contemporary conditions can overcome the influence of historical climate, particularly under extreme conditions. Using shotgun metagenomics, we assessed the composition of soil microbial functional genes across a mean annual precipitation gradient that previously showed evidence of strong climate legacies in soil carbon flux and extracellular enzyme activity. Sampling coincided with recovery from a regional, multi-year severe drought, allowing us to document how the strength of climate legacies varied with contemporary conditions. We found increased investment in genes associated with resource cycling with historically higher precipitation across the gradient, particularly in traits related to resource transport and complex carbon degradation. This legacy effect was strongest in seasons with the lowest soil moisture, suggesting that contemporary conditions-particularly, resource stress under water limitation-influences the strength of legacy effects. In contrast, investment in stress tolerance did not vary with historical precipitation, likely due to frequent periodic drought throughout the gradient. Differences in the relative abundance of functional genes explained over half of variation in microbial functional capacity-potential enzyme activity-more so than historical precipitation or current moisture conditions. Together, these results suggest that long-term climate can alter the functional potential of soil microbial communities, leading to legacies in carbon cycling.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11805608/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142973118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyphenol rewiring of the microbiome reduces methane emissions. 多酚重新布线的微生物群减少甲烷排放。
IF 10.8 1区 环境科学与生态学
ISME Journal Pub Date : 2025-01-02 DOI: 10.1093/ismejo/wraf108
Bridget B McGivern, Jared B Ellenbogen, David W Hoyt, John A Bouranis, Brooke P Stemple, Rebecca A Daly, Samantha H Bosman, Matthew B Sullivan, Ann E Hagerman, Jeffrey P Chanton, Malak M Tfaily, Kelly C Wrighton
{"title":"Polyphenol rewiring of the microbiome reduces methane emissions.","authors":"Bridget B McGivern, Jared B Ellenbogen, David W Hoyt, John A Bouranis, Brooke P Stemple, Rebecca A Daly, Samantha H Bosman, Matthew B Sullivan, Ann E Hagerman, Jeffrey P Chanton, Malak M Tfaily, Kelly C Wrighton","doi":"10.1093/ismejo/wraf108","DOIUrl":"10.1093/ismejo/wraf108","url":null,"abstract":"<p><p>Methane mitigation is regarded as a critical strategy to combat the scale of global warming. Currently, ~40% of methane emissions originate from microbial sources, which is causing strategies to suppress methanogens-either through direct toxic effects or by diverting their substrates and energy-to gain traction. Problematically, current microbial methane mitigation knowledge lacks detailed microbiome-centered insights, limiting translation across conditions and ecosystems. Here we utilize genome-resolved metatranscriptomes and metabolomes to assess the impact of a proposed methane inhibitor, catechin, on greenhouse gas emissions for high-methane-emitting peatlands. In microcosms, catechin drastically reduced methane emissions by 72%-84% compared to controls. Longitudinal sampling allowed for reconstruction of a catechin degradation pathway involving Actinomycetota and Clostridium, which break down catechin into smaller phenolic compounds within the first 21 days, followed by degradation of phenolic compounds by Pseudomonas_E from Days 21 to 35. These genomes co-expressed hydrogen-uptake genes, suggesting hydrogenases may act as a hydrogen sink during catechin degradation and consequently reduce hydrogen availability to methanogens. In support of this idea, there was decreased gene expression by hydrogenotrophic and hydrogen-dependent methylotrophic methanogens under catechin treatment. There was also reduced gene expression from genomes inferred to be functioning syntrophically with hydrogen-utilizing methanogens. We propose that catechin metabolic redirection effectively starves hydrogen-utilizing methanogens, offering a potent avenue for curbing methane emissions across diverse environments including ruminants, landfills, and constructed or managed wetlands.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203004/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144175550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structured interactions explain the absence of keystone species in synthetic microcosms. 结构化的相互作用解释了合成微观世界中关键物种的缺失。
IF 1 1区 环境科学与生态学
ISME Journal Pub Date : 2025-01-02 DOI: 10.1093/ismejo/wraf211
Sivan Pearl Mizrahi, Hyunseok Lee, Akshit Goyal, Erik Owen, Jeff Gore
{"title":"Structured interactions explain the absence of keystone species in synthetic microcosms.","authors":"Sivan Pearl Mizrahi, Hyunseok Lee, Akshit Goyal, Erik Owen, Jeff Gore","doi":"10.1093/ismejo/wraf211","DOIUrl":"10.1093/ismejo/wraf211","url":null,"abstract":"<p><p>In complex ecosystems, the loss of certain species can trigger a cascade of secondary extinctions and invasions. However, our understanding of the prevalence of these critical \"keystone\" species and the factors influencing their emergence remains limited. To address these questions, we experimentally assembled microcosms from 16 marine bacterial species and found that multiple extinctions and invasions were exceedingly rare upon removal of a species from the initial inoculation. This was true across eight different environments with either simple carbon sources (e.g. glucose) and more complex ones (e.g. glycogen). By employing a generalized Lotka-Volterra model, we could reproduce these results when interspecies interactions followed a hierarchical pattern, wherein species impacted strongly by one species were also more likely to experience strong impacts from others. Such a pattern naturally emerges due to observed variation in carrying capacities and growth rates. Furthermore, using both statistical inference and spent media experiments, we inferred interspecies interaction strengths and found them consistent with structured interactions. Our results suggest that the natural emergence of structured interactions may provide community resilience to extinctions.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12510465/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145114827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global microbial community biodiversity increases with antimicrobial toxin abundance of rare taxa. 全球微生物群落的生物多样性随着稀有类群抗菌毒素丰度的增加而增加。
IF 10.8 1区 环境科学与生态学
ISME Journal Pub Date : 2025-01-02 DOI: 10.1093/ismejo/wraf012
Ya Liu, Yu Geng, Yiru Jiang, Peng Li, Yue-Zhong Li, Zheng Zhang
{"title":"Global microbial community biodiversity increases with antimicrobial toxin abundance of rare taxa.","authors":"Ya Liu, Yu Geng, Yiru Jiang, Peng Li, Yue-Zhong Li, Zheng Zhang","doi":"10.1093/ismejo/wraf012","DOIUrl":"10.1093/ismejo/wraf012","url":null,"abstract":"<p><p>One of the central questions in microbial ecology is how to explain the high biodiversity of communities. A large number of rare taxa in the community have not been excluded by abundant taxa with competitive advantages, a contradiction known as the biodiversity paradox. Recently, increasing evidence has revealed the central importance of antimicrobial toxins as crucial weapons of antagonism in microbial survival. The powerful effects of antimicrobial toxins result in simple combinations of microorganisms failing to coexist under laboratory conditions, but it is unclear whether they also have a negative impact on the biodiversity of natural communities. Here, we revealed that microbial communities worldwide universally possess functional potential for antimicrobial toxin production. Counterintuitively, the biodiversity of global microbial communities increases, rather than decreases, as the abundance of antimicrobial toxins in rare taxa rises. Rare taxa may encode more antimicrobial toxins than abundant taxa, which is associated with the maintenance of the high biodiversity of microbial communities amid complex interactions. Our findings suggest that the antagonistic interaction caused by antimicrobial toxins may play a positive role in microbial community biodiversity at the global scale.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11822679/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143030278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信