IF 10.8 1区 环境科学与生态学 Q1 ECOLOGY
Luana Bresciani, Gordon F Custer, David Koslicki, Francisco Dini-Andreote
{"title":"Interplay of ecological processes modulates microbial community reassembly following coalescence.","authors":"Luana Bresciani, Gordon F Custer, David Koslicki, Francisco Dini-Andreote","doi":"10.1093/ismejo/wraf041","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial community coalescence refers to the mixing of entire microbial communities and their environments. Despite conceptually analogous to a multispecies invasion, the ecological processes driving this phenomenon remain poorly understood. Here, we developed and implemented a beta-diversity-based statistical framework to quantify the contribution of distinct donor communities to community reassembly dynamics over time following coalescence. We conducted a microcosm experiment with soils manipulated at varying levels of community structure (via dilution-to-extinction) and subjected these to pairwise coalescence scenarios. Overall, our results revealed variable patterns of abiotic and biotic donor dominance across distinct treatment sets. First, we show the occasional presence of an upfront stringent abiotic filter to disproportionally favor a donor biotic dominance through a \"home-field advantage\" mechanism, with abiotic factors explaining >90% of the variance in community structure. Functional community metrics (i.e. carbon metabolism and extracellular enzymatic activities) were significantly linked to donor contributions in these cases. Second, in the absence of abiotic dominance, interspecific interactions gained importance, with abiotic variables explaining <40% of the variance. Here, functional redundancy in donor communities (e.g. lower dilution) led to nonsignificant relationships between donor contributions and functional metrics. Collectively, this study advances the integration of coalescence with well-established fundamentals of invasion biology theory, highlighting the interplay of abiotic and biotic factors structuring community reassembly following coalescence. Last, we propose that our beta-diversity-based framework is widely applicable across various microbial systems. We believe this approach will promote research advances by offering a unified method for analyzing and quantifying coalescence.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971568/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf041","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

微生物群落凝聚是指整个微生物群落及其环境的混合。尽管在概念上类似于多物种入侵,但人们对驱动这一现象的生态过程仍然知之甚少。在这里,我们开发并实施了一个基于贝塔多样性的统计框架,以量化不同捐赠者群落对群落凝聚后随着时间推移重新组合动态的贡献。我们用不同群落结构水平(通过稀释到消亡)的土壤进行了微观世界实验,并对这些土壤进行了成对凝聚情景试验。总之,我们的结果显示,在不同的处理组中,非生物和生物供体的优势模式各不相同。首先,我们表明,通过 "主场优势 "机制,非生物因素解释了群落结构随时间变化的90%以上的变异,而非生物因素偶尔存在的前期严格非生物过滤会不成比例地有利于生物捐赠者的优势。在这些情况下,群落功能指标(即碳代谢和细胞外酶活性)与供体贡献有显著联系。其次,在非生物主导作用缺失的情况下,种间相互作用变得更加重要,非生物变量可解释
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interplay of ecological processes modulates microbial community reassembly following coalescence.

Microbial community coalescence refers to the mixing of entire microbial communities and their environments. Despite conceptually analogous to a multispecies invasion, the ecological processes driving this phenomenon remain poorly understood. Here, we developed and implemented a beta-diversity-based statistical framework to quantify the contribution of distinct donor communities to community reassembly dynamics over time following coalescence. We conducted a microcosm experiment with soils manipulated at varying levels of community structure (via dilution-to-extinction) and subjected these to pairwise coalescence scenarios. Overall, our results revealed variable patterns of abiotic and biotic donor dominance across distinct treatment sets. First, we show the occasional presence of an upfront stringent abiotic filter to disproportionally favor a donor biotic dominance through a "home-field advantage" mechanism, with abiotic factors explaining >90% of the variance in community structure. Functional community metrics (i.e. carbon metabolism and extracellular enzymatic activities) were significantly linked to donor contributions in these cases. Second, in the absence of abiotic dominance, interspecific interactions gained importance, with abiotic variables explaining <40% of the variance. Here, functional redundancy in donor communities (e.g. lower dilution) led to nonsignificant relationships between donor contributions and functional metrics. Collectively, this study advances the integration of coalescence with well-established fundamentals of invasion biology theory, highlighting the interplay of abiotic and biotic factors structuring community reassembly following coalescence. Last, we propose that our beta-diversity-based framework is widely applicable across various microbial systems. We believe this approach will promote research advances by offering a unified method for analyzing and quantifying coalescence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ISME Journal
ISME Journal 环境科学-生态学
CiteScore
22.10
自引率
2.70%
发文量
171
审稿时长
2.6 months
期刊介绍: The ISME Journal covers the diverse and integrated areas of microbial ecology. We encourage contributions that represent major advances for the study of microbial ecosystems, communities, and interactions of microorganisms in the environment. Articles in The ISME Journal describe pioneering discoveries of wide appeal that enhance our understanding of functional and mechanistic relationships among microorganisms, their communities, and their habitats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信