ISME JournalPub Date : 2024-01-08DOI: 10.1093/ismejo/wrae146
Ting Zhang, Hang Zhong, Lu Lin, Zhiyan Zhang, Kewen Xue, Feixiang He, Yingshu Luo, Panpan Wang, Zhi Zhao, Li Cong, Pengfei Pang, Xiaofeng Li, Hong Shan, Zhixiang Yan
{"title":"Core microbiome-associated proteins associated with ulcerative colitis interact with cytokines for synergistic or antagonistic effects on gut bacteria.","authors":"Ting Zhang, Hang Zhong, Lu Lin, Zhiyan Zhang, Kewen Xue, Feixiang He, Yingshu Luo, Panpan Wang, Zhi Zhao, Li Cong, Pengfei Pang, Xiaofeng Li, Hong Shan, Zhixiang Yan","doi":"10.1093/ismejo/wrae146","DOIUrl":"10.1093/ismejo/wrae146","url":null,"abstract":"<p><p>Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is associated with a loss or an imbalance of host-microorganism interactions. However, such interactions at protein levels remain largely unknown. Here, we applied a depletion-assisted metaproteomics approach to obtain in-depth host-microbiome association networks of IBD, where the core host proteins shifted from those maintaining mucosal homeostasis in controls to those involved in inflammation, proteolysis, and intestinal barrier in IBD. Microbial nodes such as short-chain fatty-acid producer-related host-microbial crosstalk were lost or suppressed by inflammatory proteins in IBD. Guided by protein-protein association networks, we employed proteomics and lipidomics to investigate the effects of UC-related core proteins S100A8, S100A9, and cytokines (IL-1β, IL-6, and TNF-α) on gut bacteria. These proteins suppressed purine nucleotide biosynthesis in stool-derived in vitro communities, which was also reduced in IBD stool samples. Single species study revealed that S100A8, S100A9, and cytokines can synergistically or antagonistically alter gut bacteria intracellular and secreted proteome, with combined S100A8 and S100A9 potently inhibiting beneficial Bifidobacterium adolescentis. Furthermore, these inflammatory proteins only altered the extracellular but not intracellular proteins of Ruminococcus gnavus. Generally, S100A8 induced more significant bacterial proteome changes than S100A9, IL-1β, IL-6, and TNF-α but gut bacteria degrade significantly more S100A8 than S100A9 in the presence of both proteins. Among the investigated species, distinct lipid alterations were only observed in Bacteroides vulgatus treated with combined S100A8, S100A9, and cytokines. These results provided a valuable resource of inflammatory protein-centric host-microbial molecular interactions.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360980/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141793966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tradeoffs between phage resistance and nitrogen fixation drive the evolution of genes essential for cyanobacterial heterocyst functionality.","authors":"Dikla Kolan, Esther Cattan-Tsaushu, Hagay Enav, Zohar Freiman, Nechama Malinsky-Rushansky, Shira Ninio, Sarit Avrani","doi":"10.1093/ismejo/wrad008","DOIUrl":"10.1093/ismejo/wrad008","url":null,"abstract":"<p><p>Harmful blooms caused by diazotrophic (nitrogen-fixing) Cyanobacteria are becoming increasingly frequent and negatively impact aquatic environments worldwide. Cyanophages (viruses infecting Cyanobacteria) can potentially regulate cyanobacterial blooms, yet Cyanobacteria can rapidly acquire mutations that provide protection against phage infection. Here, we provide novel insights into cyanophage:Cyanobacteria interactions by characterizing the resistance to phages in two species of diazotrophic Cyanobacteria: Nostoc sp. and Cylindrospermopsis raciborskii. Our results demonstrate that phage resistance is associated with a fitness tradeoff by which resistant Cyanobacteria have reduced ability to fix nitrogen and/or to survive nitrogen starvation. Furthermore, we use whole-genome sequence analysis of 58 Nostoc-resistant strains to identify several mutations associated with phage resistance, including in cell surface-related genes and regulatory genes involved in the development and function of heterocysts (cells specialized in nitrogen fixation). Finally, we employ phylogenetic analyses to show that most of these resistance genes are accessory genes whose evolution is impacted by lateral gene transfer events. Together, these results further our understanding of the interplay between diazotrophic Cyanobacteria and their phages and suggest that a tradeoff between phage resistance and nitrogen fixation affects the evolution of cell surface-related genes and of genes involved in heterocyst differentiation and nitrogen fixation.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":"18 1","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10811720/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139747727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ISME JournalPub Date : 2024-01-08DOI: 10.1093/ismejo/wrae106
Yongcui Deng, Alexander K Umbach, Josh D Neufeld
{"title":"Nonparametric richness estimators Chao1 and ACE must not be used with amplicon sequence variant data.","authors":"Yongcui Deng, Alexander K Umbach, Josh D Neufeld","doi":"10.1093/ismejo/wrae106","DOIUrl":"10.1093/ismejo/wrae106","url":null,"abstract":"","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208923/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141318823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ISME JournalPub Date : 2024-01-08DOI: 10.1093/ismejo/wrae107
Yiming Wang, Jocelyn M Choo, Alyson C Richard, Lito E Papanicolas, Steve L Wesselingh, Steven L Taylor, Geraint B Rogers
{"title":"Intestinal persistence of Bifidobacterium infantis is determined by interaction of host genetics and antibiotic exposure.","authors":"Yiming Wang, Jocelyn M Choo, Alyson C Richard, Lito E Papanicolas, Steve L Wesselingh, Steven L Taylor, Geraint B Rogers","doi":"10.1093/ismejo/wrae107","DOIUrl":"10.1093/ismejo/wrae107","url":null,"abstract":"<p><p>Probiotics have gained significant attention as a potential strategy to improve health by modulating host-microbe interactions, particularly in situations where the normal microbiota has been disrupted. However, evidence regarding their efficacy has been inconsistent, with considerable interindividual variability in response. We aimed to explore whether a common genetic variant that affects the production of mucosal α(1,2)-fucosylated glycans, present in around 20% of the population, could explain the observed interpersonal differences in the persistence of commonly used probiotics. Using a mouse model with varying α(1,2)-fucosylated glycans secretion (Fut2WT or Fut2KO), we examined the abundance and persistence of Bifidobacterium strains (infantis, breve, and bifidum). We observed significant differences in baseline gut microbiota characteristics between Fut2WT and Fut2KO littermates, with Fut2WT mice exhibiting enrichment of species able to utilize α(1,2)-fucosylated glycans. Following antibiotic exposure, only Fut2WT animals showed persistent engraftment of Bifidobacterium infantis, a strain able to internalize α(1,2)-fucosylated glycans, whereas B. breve and B. bifidum, which cannot internalize α(1,2)-fucosylated glycans, did not exhibit this difference. In mice with an intact commensal microbiota, the relationship between secretor status and B. infantis persistence was reversed, with Fut2KO animals showing greater persistence compared to Fut2WT. Our findings suggest that the interplay between a common genetic variation and antibiotic exposure plays a crucial role in determining the dynamics of B. infantis in the recipient gut, which could potentially contribute to the observed variation in response to this commonly used probiotic species.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11214156/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141428158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ISME JournalPub Date : 2024-01-08DOI: 10.1093/ismejo/wrae114
Katherine Ramos Sarmiento, Alex Carr, Christian Diener, Kenneth J Locey, Sean M Gibbons
{"title":"Island biogeography theory provides a plausible explanation for why larger vertebrates and taller humans have more diverse gut microbiomes.","authors":"Katherine Ramos Sarmiento, Alex Carr, Christian Diener, Kenneth J Locey, Sean M Gibbons","doi":"10.1093/ismejo/wrae114","DOIUrl":"10.1093/ismejo/wrae114","url":null,"abstract":"<p><p>Prior work has shown a positive scaling relationship between vertebrate body size, human height, and gut microbiome alpha diversity. This observation mirrors commonly observed species area relationships (SARs) in many other ecosystems. Here, we expand these observations to several large datasets, showing that this size-diversity scaling relationship is independent of relevant covariates, like diet, body mass index, age, sex, bowel movement frequency, antibiotic usage, and cardiometabolic health markers. Island biogeography theory (IBT), which predicts that larger islands tend to harbor greater species diversity through neutral demographic processes, provides a simple mechanism for positive SARs. Using a gut-adapted IBT model, we demonstrated that increasing the length of a flow-through ecosystem led to increased species diversity, closely matching our empirical observations. We delve into the possible clinical implications of these SARs in the American Gut cohort. Consistent with prior observations that lower alpha diversity is a risk factor for Clostridioides difficile infection (CDI), we found that individuals who reported a history of CDI were shorter than those who did not and that this relationship was mediated by alpha diversity. We observed that vegetable consumption had a much stronger association with CDI history, which was also partially mediated by alpha diversity. In summary, we find that the positive scaling observed between body size and gut alpha diversity can be plausibly explained by a gut-adapted IBT model, may be related to CDI risk, and vegetable intake appears to independently mitigate this risk, although additional work is needed to validate the potential disease risk implications.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253425/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141433266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ISME JournalPub Date : 2024-01-08DOI: 10.1093/ismejo/wrae117
Qi Song, Fangqing Zhao, Lina Hou, Miao Miao
{"title":"Cellular interactions and evolutionary origins of endosymbiotic relationships with ciliates.","authors":"Qi Song, Fangqing Zhao, Lina Hou, Miao Miao","doi":"10.1093/ismejo/wrae117","DOIUrl":"10.1093/ismejo/wrae117","url":null,"abstract":"<p><p>As unicellular predators, ciliates engage in close associations with diverse microbes, laying the foundation for the establishment of endosymbiosis. Originally heterotrophic, ciliates demonstrate the ability to acquire phototrophy by phagocytizing unicellular algae or by sequestering algal plastids. This adaptation enables them to gain photosynthate and develop resistance to unfavorable environmental conditions. The integration of acquired phototrophy with intrinsic phagotrophy results in a trophic mode known as mixotrophy. Additionally, ciliates can harbor thousands of bacteria in various intracellular regions, including the cytoplasm and nucleus, exhibiting species specificity. Under prolonged and specific selective pressure within hosts, bacterial endosymbionts evolve unique lifestyles and undergo particular reductions in metabolic activities. Investigating the research advancements in various endosymbiotic cases within ciliates will contribute to elucidate patterns in cellular interaction and unravel the evolutionary origins of complex traits.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253213/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141447412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spatiotemporal dynamics of giant viruses within a deep freshwater lake reveal a distinct dark-water community.","authors":"Liwen Zhang, Lingjie Meng, Yue Fang, Hiroyuki Ogata, Yusuke Okazaki","doi":"10.1093/ismejo/wrae182","DOIUrl":"10.1093/ismejo/wrae182","url":null,"abstract":"<p><p>Giant viruses (GVs) significantly regulate the ecological dynamics of diverse ecosystems. Although metagenomics has expanded our understanding of their diversity and ecological roles played in marine environments, little is known about GVs of freshwater ecosystems. Most previous studies have employed short-read sequencing and therefore resulted in fragmented genomes, hampering accurate assessment of genetic diversity. We sought to bridge this knowledge gap and overcome previous technical limitations. We subjected spatiotemporal (2 depths × 12 months) samples from Lake Biwa to metagenome-assembled genome reconstruction enhanced by long-read metagenomics. This yielded 293 GV metagenome-assembled genomes. Of these, 285 included previously unknown species in five orders of nucleocytoviruses and the first representatives of freshwater mirusviruses, which exhibited marked divergence from marine-derived lineages. The good performance of our long-read metagenomic assembly was demonstrated by the detection of 42 (14.3%) genomes composed of single contigs with completeness values >90%. GVs were partitioned across water depths, with most species specific to either the sunlit epilimnion or the dark hypolimnion. Epilimnion-specific members tended to be transient and exhibit short and intense abundance peaks, in line with the fact that they regulate the surface algal blooms. During the spring bloom, mirusviruses and members of three nucleocytovirus families were among the most abundant viruses. In contrast, hypolimnion-specific ones, including a mirusvirus genome, were typically more persistent in the hypolimnion throughout the water-stratified period, suggesting that they infect hosts specific to the hypolimnion and play previously unexplored ecological roles in dark water microbial ecosystems.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465185/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142309014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cyanorhodopsin-II represents a yellow-absorbing proton-pumping rhodopsin clade within cyanobacteria.","authors":"Masumi Hasegawa-Takano, Toshiaki Hosaka, Keiichi Kojima, Yosuke Nishimura, Marie Kurihara, Yu Nakajima, Yoshiko Ishizuka-Katsura, Tomomi Kimura-Someya, Mikako Shirouzu, Yuki Sudo, Susumu Yoshizawa","doi":"10.1093/ismejo/wrae175","DOIUrl":"10.1093/ismejo/wrae175","url":null,"abstract":"<p><p>Microbial rhodopsins are prevalent in many cyanobacterial groups as a light-energy-harvesting system in addition to the photosynthetic system. It has been suggested that this dual system allows efficient capture of sunlight energy using complementary ranges of absorption wavelengths. However, the diversity of cyanobacterial rhodopsins, particularly in accumulated metagenomic data, remains underexplored. Here, we used a metagenomic mining approach, which led to the identification of a novel rhodopsin clade unique to cyanobacteria, cyanorhodopsin-II (CyR-II). CyR-IIs function as light-driven outward H+ pumps. CyR-IIs, together with previously identified cyanorhodopsins (CyRs) and cyanobacterial halorhodopsins (CyHRs), constitute cyanobacterial ion-pumping rhodopsins (CyipRs), a phylogenetically distinct family of rhodopsins. The CyR-II clade is further divided into two subclades, YCyR-II and GCyR-II, based on their specific absorption wavelength. YCyR-II absorbed yellow light (λmax = 570 nm), whereas GCyR-II absorbed green light (λmax = 550 nm). X-ray crystallography and mutational analysis revealed that the difference in absorption wavelengths is attributable to slight changes in the side chain structure near the retinal chromophore. The evolutionary trajectory of cyanobacterial rhodopsins suggests that the function and light-absorbing range of these rhodopsins have been adapted to a wide range of habitats with variable light and environmental conditions. Collectively, these findings shed light on the importance of rhodopsins in the evolution and environmental adaptation of cyanobacteria.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":"18 1","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528372/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ISME JournalPub Date : 2024-01-08DOI: 10.1093/ismejo/wrae081
Andrea Söllinger, Laureen S Ahlers, Mathilde Borg Dahl, Páll Sigurðsson, Coline Le Noir de Carlan, Biplabi Bhattarai, Christoph Gall, Victoria S Martin, Cornelia Rottensteiner, Liabo L Motleleng, Eva Marie Breines, Erik Verbruggen, Ivika Ostonen, Bjarni D Sigurdsson, Andreas Richter, Alexander T Tveit
{"title":"Microorganisms in subarctic soils are depleted of ribosomes under short-, medium-, and long-term warming.","authors":"Andrea Söllinger, Laureen S Ahlers, Mathilde Borg Dahl, Páll Sigurðsson, Coline Le Noir de Carlan, Biplabi Bhattarai, Christoph Gall, Victoria S Martin, Cornelia Rottensteiner, Liabo L Motleleng, Eva Marie Breines, Erik Verbruggen, Ivika Ostonen, Bjarni D Sigurdsson, Andreas Richter, Alexander T Tveit","doi":"10.1093/ismejo/wrae081","DOIUrl":"10.1093/ismejo/wrae081","url":null,"abstract":"<p><p>Physiological responses of soil microorganisms to global warming are important for soil ecosystem function and the terrestrial carbon cycle. Here, we investigate the effects of weeks, years, and decades of soil warming across seasons and time on the microbial protein biosynthesis machineries (i.e. ribosomes), the most abundant cellular macromolecular complexes, using RNA:DNA and RNA:MBC (microbial biomass carbon) ratios as proxies for cellular ribosome contents. We compared warmed soils and non-warmed controls of 15 replicated subarctic grassland and forest soil temperature gradients subject to natural geothermal warming. RNA:DNA ratios tended to be lower in the warmed soils during summer and autumn, independent of warming duration (6 weeks, 8-14 years, and > 50 years), warming intensity (+3°C, +6°C, and +9°C), and ecosystem type. With increasing temperatures, RNA:MBC ratios were also decreasing. Additionally, seasonal RNA:DNA ratios of the consecutively sampled forest showed the same temperature-driven pattern. This suggests that subarctic soil microorganisms are depleted of ribosomes under warm conditions and the lack of consistent relationships with other physicochemical parameters besides temperature further suggests temperature as key driver. Furthermore, in incubation experiments, we measured significantly higher CO2 emission rates per unit of RNA from short- and long-term warmed soils compared to non-warmed controls. In conclusion, ribosome reduction may represent a widespread microbial physiological response to warming that offers a selective advantage at higher temperatures, as energy and matter can be reallocated from ribosome synthesis to other processes including substrate uptake and turnover. This way, ribosome reduction could have a substantial effect on soil carbon dynamics.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11126301/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140897331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ISME JournalPub Date : 2024-01-08DOI: 10.1093/ismejo/wrae095
{"title":"Correction to: Incomplete tricarboxylic acid cycle and proton gradient in Pandoravirus massiliensis: is it still a virus?","authors":"","doi":"10.1093/ismejo/wrae095","DOIUrl":"10.1093/ismejo/wrae095","url":null,"abstract":"","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":"18 1","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11159527/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141288893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}