ISME JournalPub Date : 2024-01-08DOI: 10.1093/ismejo/wrae116
Nina Roothans, Minke Gabriëls, Thomas Abeel, Martin Pabst, Mark C M van Loosdrecht, Michele Laureni
{"title":"Aerobic denitrification as an N2O source from microbial communities.","authors":"Nina Roothans, Minke Gabriëls, Thomas Abeel, Martin Pabst, Mark C M van Loosdrecht, Michele Laureni","doi":"10.1093/ismejo/wrae116","DOIUrl":"10.1093/ismejo/wrae116","url":null,"abstract":"<p><p>Nitrous oxide (N2O) is a potent greenhouse gas of primarily microbial origin. Oxic and anoxic emissions are commonly ascribed to autotrophic nitrification and heterotrophic denitrification, respectively. Beyond this established dichotomy, we quantitatively show that heterotrophic denitrification can significantly contribute to aerobic nitrogen turnover and N2O emissions in complex microbiomes exposed to frequent oxic/anoxic transitions. Two planktonic, nitrification-inhibited enrichment cultures were established under continuous organic carbon and nitrate feeding, and cyclic oxygen availability. Over a third of the influent organic substrate was respired with nitrate as electron acceptor at high oxygen concentrations (>6.5 mg/L). N2O accounted for up to one-quarter of the nitrate reduced under oxic conditions. The enriched microorganisms maintained a constitutive abundance of denitrifying enzymes due to the oxic/anoxic frequencies exceeding their protein turnover-a common scenario in natural and engineered ecosystems. The aerobic denitrification rates are ascribed primarily to the residual activity of anaerobically synthesised enzymes. From an ecological perspective, the selection of organisms capable of sustaining significant denitrifying activity during aeration shows their competitive advantage over other heterotrophs under varying oxygen availabilities. Ultimately, we propose that the contribution of heterotrophic denitrification to aerobic nitrogen turnover and N2O emissions is currently underestimated in dynamic environments.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11272060/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141447411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ISME JournalPub Date : 2024-01-08DOI: 10.1093/ismejo/wrae118
Yin Ye, Lu Zhang, Xiaohui Hong, Man Chen, Xing Liu, Shungui Zhou
{"title":"Interspecies ecological competition rejuvenates decayed Geobacter electroactive biofilm.","authors":"Yin Ye, Lu Zhang, Xiaohui Hong, Man Chen, Xing Liu, Shungui Zhou","doi":"10.1093/ismejo/wrae118","DOIUrl":"10.1093/ismejo/wrae118","url":null,"abstract":"<p><p>Bioelectrochemical systems (BESs) exploit electroactive biofilms (EABs) for promising applications in biosensing, wastewater treatment, energy production, and chemical biosynthesis. However, during the operation of BESs, EABs inevitably decay. Seeking approaches to rejuvenate decayed EABs is critical for the sustainability and practical application of BESs. Prophage induction has been recognized as the primary reason for EAB decay. Herein, we report that introducing a competitive species of Geobacter uraniireducens suspended prophage induction in Geobacter sulfurreducens and thereby rejuvenated the decayed G. sulfurreducens EAB. The transcriptomic profile of G. sulfurreducens demonstrated that the addition of G. uraniireducens significantly affected the expression of metabolism- and stress response system-related genes and in particular suppressed the induction of phage-related genes. Mechanistic analyses revealed that interspecies ecological competition exerted by G. uraniireducens suppressed prophage induction. Our findings not only reveal a novel strategy to rejuvenate decayed EABs, which is significant for the sustainability of BESs, but also provide new knowledge for understanding phage-host interactions from an ecological perspective, with implications for developing therapies to defend against phage attack.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227281/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141447414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gut microbiota facilitate adaptation of invasive moths to new host plants.","authors":"Shouke Zhang, Feng Song, Jie Wang, Xiayu Li, Yuxin Zhang, Wenwu Zhou, Letian Xu","doi":"10.1093/ismejo/wrae031","DOIUrl":"10.1093/ismejo/wrae031","url":null,"abstract":"<p><p>Gut microbiota are important in the adaptation of phytophagous insects to their plant hosts. However, the interaction between gut microbiomes and pioneering populations of invasive insects during their adaptation to new hosts, particularly in the initial phases of invasion, has been less studied. We studied the contribution of the gut microbiome to host adaptation in the globally recognized invasive pest, Hyphantria cunea, as it expands its range into southern China. The southern population of H. cunea shows effective adaptation to Metasequoia glyptostroboides and exhibits greater larval survival on Metasequoia than the original population. Genome resequencing revealed no significant differences in functions related to host adaptation between the two populations. The compatibility between southern H. cunea populations and M. glyptostroboides revealed a correlation between the abundance of several gut bacteria genera (Bacteroides, Blautia, and Coprococcus) and H. cunea survival. Transplanting the larval gut microbiome from southern to northern populations enhanced the adaptability of the latter to the previously unsuitable plant M. glyptostroboides. This research provides evidence that the gut microbiome of pioneering populations can enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10980833/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139998136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ISME JournalPub Date : 2024-01-08DOI: 10.1093/ismejo/wrae137
Maider J Echeveste Medrano, Andy O Leu, Martin Pabst, Yuemei Lin, Simon J McIlroy, Gene W Tyson, Jitske van Ede, Irene Sánchez-Andrea, Mike S M Jetten, Robert Jansen, Cornelia U Welte
{"title":"Osmoregulation in freshwater anaerobic methane-oxidizing archaea under salt stress.","authors":"Maider J Echeveste Medrano, Andy O Leu, Martin Pabst, Yuemei Lin, Simon J McIlroy, Gene W Tyson, Jitske van Ede, Irene Sánchez-Andrea, Mike S M Jetten, Robert Jansen, Cornelia U Welte","doi":"10.1093/ismejo/wrae137","DOIUrl":"10.1093/ismejo/wrae137","url":null,"abstract":"<p><p>Climate change-driven sea level rise threatens freshwater ecosystems and elicits salinity stress in microbiomes. Methane emissions in these systems are largely mitigated by methane-oxidizing microorganisms. Here, we characterized the physiological and metabolic response of freshwater methanotrophic archaea to salt stress. In our microcosm experiments, inhibition of methanotrophic archaea started at 1%. However, during gradual increase of salt up to 3% in a reactor over 12 weeks, the culture continued to oxidize methane. Using gene expression profiles and metabolomics, we identified a pathway for salt-stress response that produces the osmolyte of anaerobic methanotrophic archaea: N(ε)-acetyl-β-L-lysine. An extensive phylogenomic analysis on N(ε)-acetyl-β-L-lysine-producing enzymes revealed that they are widespread across both bacteria and archaea, indicating a potential horizontal gene transfer and a link to BORG extrachromosomal elements. Physicochemical analysis of bioreactor biomass further indicated the presence of sialic acids and the consumption of intracellular polyhydroxyalkanoates in anaerobic methanotrophs during salt stress.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337218/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141728216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ISME JournalPub Date : 2024-01-08DOI: 10.1093/ismejo/wrae159
Chyrene Moncada, Carol Arnosti, Jan D Brüwer, Dirk de Beer, Rudolf Amann, Katrin Knittel
{"title":"Niche separation in bacterial communities and activities in porewater, loosely attached, and firmly attached fractions in permeable surface sediments.","authors":"Chyrene Moncada, Carol Arnosti, Jan D Brüwer, Dirk de Beer, Rudolf Amann, Katrin Knittel","doi":"10.1093/ismejo/wrae159","DOIUrl":"10.1093/ismejo/wrae159","url":null,"abstract":"<p><p>Heterotrophic microbes are central to organic matter degradation and transformation in marine sediments. Currently, most investigations of benthic microbiomes do not differentiate between processes in the porewater and on the grains and, hence, only show a generalized picture of the community. This limits our understanding of the structure and functions of sediment microbiomes. To address this problem, we fractionated sandy surface sediment microbial communities from a coastal site in Isfjorden, Svalbard, into cells associated with the porewater, loosely attached to grains, and firmly attached to grains; we found dissimilar bacterial communities and metabolic activities in these fractions. Most (84%-89%) of the cells were firmly attached, and this fraction comprised more anaerobes, such as sulfate reducers, than the other fractions. The porewater and loosely attached fractions (3% and 8%-13% of cells, respectively) had more aerobic heterotrophs. These two fractions generally showed a higher frequency of dividing cells, polysaccharide (laminarin) hydrolysis rates, and per-cell O2 consumption than the firmly attached cells. Thus, the different fractions occupy distinct niches within surface sediments: the firmly attached fraction is potentially made of cells colonizing areas on the grain that are protected from abrasion, but might be more diffusion-limited for organic matter and electron acceptors. In contrast, the porewater and loosely attached fractions are less resource-limited and have faster growth. Their cell numbers are kept low possibly through abrasion and exposure to grazers. Differences in community composition and activity of these cell fractions point to their distinct roles and contributions to carbon cycling within surface sediments.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368169/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141903449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ISME JournalPub Date : 2024-01-08DOI: 10.1093/ismejo/wrae130
Queralt Güell-Bujons, Medea Zanoli, Idan Tuval, Albert Calbet, Rafel Simó
{"title":"Distinctive chemotactic responses of three marine herbivore protists to DMSP and related compounds.","authors":"Queralt Güell-Bujons, Medea Zanoli, Idan Tuval, Albert Calbet, Rafel Simó","doi":"10.1093/ismejo/wrae130","DOIUrl":"10.1093/ismejo/wrae130","url":null,"abstract":"<p><p>Marine planktonic predator-prey interactions occur in microscale seascapes, where diffusing chemicals may act either as chemotactic cues that enhance or arrest predation, or as elemental resources that are complementary to prey ingestion. The phytoplankton osmolyte dimethylsulfoniopropionate (DMSP) and its degradation products dimethylsulfide (DMS) and acrylate are pervasive compounds with high chemotactic potential, but there is a longstanding controversy over whether they act as grazing enhancers or deterrents. Here, we investigated the chemotactic responses of three herbivorous dinoflagellates to point-sourced, microscale gradients of dissolved DMSP, DMS, and acrylate. We found no evidence for acrylate being a chemotactic repellent and observed a weak attractor role of DMS. DMSP behaved as a strong chemoattractor whose potential for grazing facilitation through effects on swimming patterns and aggregation depends on the grazer's feeding mode and ability to incorporate DMSP. Our study reveals that predation models will fail to predict grazing impacts unless they incorporate chemotaxis-driven searching and finding of prey.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11283757/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141602008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ISME JournalPub Date : 2024-01-08DOI: 10.1093/ismejo/wrae232
{"title":"Correction to: Dispersal of microbes from grassland fire smoke to soils.","authors":"","doi":"10.1093/ismejo/wrae232","DOIUrl":"https://doi.org/10.1093/ismejo/wrae232","url":null,"abstract":"","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":"18 1","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142933441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ISME JournalPub Date : 2024-01-08DOI: 10.1093/ismejo/wrae219
Raquel Peixoto, Christian R Voolstra, Lisa Y Stein, Philip Hugenholtz, Joana Falcao Salles, Shady A Amin, Max Häggblom, Ann Gregory, Thulani P Makhalanyane, Fengping Wang, Nadège Adoukè Agbodjato, Yinzhao Wang, Nianzhi Jiao, Jay T Lennon, Antonio Ventosa, Patrik M Bavoil, Virginia Miller, Jack A Gilbert
{"title":"Microbial solutions must be deployed against climate catastrophe.","authors":"Raquel Peixoto, Christian R Voolstra, Lisa Y Stein, Philip Hugenholtz, Joana Falcao Salles, Shady A Amin, Max Häggblom, Ann Gregory, Thulani P Makhalanyane, Fengping Wang, Nadège Adoukè Agbodjato, Yinzhao Wang, Nianzhi Jiao, Jay T Lennon, Antonio Ventosa, Patrik M Bavoil, Virginia Miller, Jack A Gilbert","doi":"10.1093/ismejo/wrae219","DOIUrl":"10.1093/ismejo/wrae219","url":null,"abstract":"","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":"18 1","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552515/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142631859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Host genetic variation and specialized metabolites from wheat leaves enriches for phyllosphere Pseudomonas spp. with enriched antibiotic resistomes.","authors":"Qian Xiang, Da Lin, Zai-Jun Yang, Rui-Xia Han, Tian-Lun Zhang, Qing-Lin Chen, Dong Zhu, Josep Penuelas, Yong-Guan Zhu","doi":"10.1093/ismejo/wrae144","DOIUrl":"10.1093/ismejo/wrae144","url":null,"abstract":"<p><p>Antibiotic resistance in plant-associated microbiomes poses significant risks for agricultural ecosystems and human health. Although accumulating evidence suggests a role for plant genotypes in shaping their microbiome, almost nothing is known about how the changes of plant genetic information affect the co-evolved plant microbiome carrying antibiotic resistance genes (ARGs). Here, we selected 16 wheat cultivars and experimentally explored the impact of host genetic variation on phyllosphere microbiome, ARGs, and metabolites. Our results demonstrated that host genetic variation significantly influenced the phyllosphere resistomes. Wheat genotypes exhibiting high phyllosphere ARGs were linked to elevated Pseudomonas populations, along with increased abundances of Pseudomonas aeruginosa biofilm formation genes. Further analysis of 350 Pseudomonas spp. genomes from diverse habitats at a global scale revealed that nearly all strains possess multiple ARGs, virulence factor genes (VFGs), and mobile genetic elements (MGEs) on their genomes, albeit with lower nucleotide diversity compared to other species. These findings suggested that the proliferation of Pseudomonas spp. in the phyllosphere significantly contributed to antibiotic resistance. We further observed direct links between the upregulated leaf metabolite DIMBOA-Glc, Pseudomonas spp., and enrichment of phyllosphere ARGs, which were corroborated by microcosm experiments demonstrating that DIMBOA-Glc significantly enhanced the relative abundance of Pseudomonas spp. Overall, alterations in leaf metabolites resulting from genetic variation throughout plant evolution may drive the development of highly specialized microbial communities capable of enriching phyllosphere ARGs. This study enhances our understanding of how plants actively shape microbial communities and clarifies the impact of host genetic variation on the plant resistomes.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334211/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141793968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ISME JournalPub Date : 2024-01-08DOI: 10.1093/ismejo/wrae160
Samantha G Fortin, Xin Sun, Amal Jayakumar, Bess B Ward
{"title":"Nitrite-oxidizing bacteria adapted to low-oxygen conditions dominate nitrite oxidation in marine oxygen minimum zones.","authors":"Samantha G Fortin, Xin Sun, Amal Jayakumar, Bess B Ward","doi":"10.1093/ismejo/wrae160","DOIUrl":"10.1093/ismejo/wrae160","url":null,"abstract":"<p><p>Nitrite is a central molecule in the nitrogen cycle because nitrite oxidation to nitrate (an aerobic process) retains fixed nitrogen in a system and its reduction to dinitrogen gas (anaerobic) reduces the fixed nitrogen inventory. Despite its acknowledged requirement for oxygen, nitrite oxidation is observed in oxygen-depleted layers of the ocean's oxygen minimum zones (OMZs), challenging the current understanding of OMZ nitrogen cycling. Previous attempts to determine whether nitrite-oxidizing bacteria in the anoxic layer differ from known nitrite oxidizers in the open ocean were limited by cultivation difficulties and sequencing depth. Here, we construct 31 draft genomes of nitrite-oxidizing bacteria from global OMZs. The distribution of nitrite oxidation rates, abundance and expression of nitrite oxidoreductase genes, and relative abundance of nitrite-oxidizing bacterial draft genomes from the same samples all show peaks in the core of the oxygen-depleted zone (ODZ) and are all highly correlated in depth profiles within the major ocean oxygen minimum zones. The ODZ nitrite oxidizers are not found in the Tara Oceans global dataset (the most complete oxic ocean dataset), and the major nitrite oxidizers found in the oxygenated ocean do not occur in ODZ waters. A pangenomic analysis shows the ODZ nitrite oxidizers have distinct gene clusters compared to oxic nitrite oxidizers and are microaerophilic. These findings all indicate the existence of nitrite oxidizers whose niche is oxygen-deficient seawater. Thus, specialist nitrite-oxidizing bacteria are responsible for fixed nitrogen retention in marine oxygen minimum zones, with implications for control of the ocean's fixed nitrogen inventory.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373643/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141983776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}