Conditions for the spread of CRISPR-Cas immune systems into bacterial populations.

IF 10.8 1区 环境科学与生态学 Q1 ECOLOGY
Josie F K Elliott, David V McLeod, Tiffany B Taylor, Edze R Westra, Sylvain Gandon, Bridget N J Watson
{"title":"Conditions for the spread of CRISPR-Cas immune systems into bacterial populations.","authors":"Josie F K Elliott, David V McLeod, Tiffany B Taylor, Edze R Westra, Sylvain Gandon, Bridget N J Watson","doi":"10.1093/ismejo/wrae108","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteria contain a wide variety of innate and adaptive immune systems which provide protection to the host against invading genetic material, including bacteriophages (phages). It is becoming increasingly clear that bacterial immune systems are frequently lost and gained through horizontal gene transfer. However, how and when new immune systems can become established in a bacterial population have remained largely unstudied. We developed a joint epidemiological and evolutionary model that predicts the conditions necessary for the spread of a CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) immune system into a bacterial population lacking this system. We found that whether bacteria carrying CRISPR-Cas will spread (increase in frequency) into a bacterial population depends on the abundance of phages and the difference in the frequency of phage resistance mechanisms between bacteria carrying a CRISPR-Cas immune system and those not (denoted as ${f}_{\\Delta }$). Specifically, the abundance of cells carrying CRISPR-Cas will increase if there is a higher proportion of phage resistance (either via CRISPR-Cas immunity or surface modification) in the CRISPR-Cas-possessing population than in the cells lacking CRISPR-Cas. We experimentally validated these predictions in a model using Pseudomonas aeruginosa PA14 and phage DMS3vir. Specifically, by varying the initial ratios of different strains of bacteria that carry alternative forms of phage resistance, we confirmed that the spread of cells carrying CRISPR-Cas through a population can be predicted based on phage density and the relative frequency of resistance phenotypes. Understanding which conditions promote the spread of CRISPR-Cas systems helps to predict when and where these defences can become established in bacterial populations after a horizontal gene transfer event, both in ecological and clinical contexts.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285788/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae108","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bacteria contain a wide variety of innate and adaptive immune systems which provide protection to the host against invading genetic material, including bacteriophages (phages). It is becoming increasingly clear that bacterial immune systems are frequently lost and gained through horizontal gene transfer. However, how and when new immune systems can become established in a bacterial population have remained largely unstudied. We developed a joint epidemiological and evolutionary model that predicts the conditions necessary for the spread of a CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) immune system into a bacterial population lacking this system. We found that whether bacteria carrying CRISPR-Cas will spread (increase in frequency) into a bacterial population depends on the abundance of phages and the difference in the frequency of phage resistance mechanisms between bacteria carrying a CRISPR-Cas immune system and those not (denoted as ${f}_{\Delta }$). Specifically, the abundance of cells carrying CRISPR-Cas will increase if there is a higher proportion of phage resistance (either via CRISPR-Cas immunity or surface modification) in the CRISPR-Cas-possessing population than in the cells lacking CRISPR-Cas. We experimentally validated these predictions in a model using Pseudomonas aeruginosa PA14 and phage DMS3vir. Specifically, by varying the initial ratios of different strains of bacteria that carry alternative forms of phage resistance, we confirmed that the spread of cells carrying CRISPR-Cas through a population can be predicted based on phage density and the relative frequency of resistance phenotypes. Understanding which conditions promote the spread of CRISPR-Cas systems helps to predict when and where these defences can become established in bacterial populations after a horizontal gene transfer event, both in ecological and clinical contexts.

CRISPR-Cas免疫系统在细菌种群中传播的条件。
细菌含有多种先天性和适应性免疫系统,可保护宿主免受遗传物质(包括噬菌体)的入侵。人们越来越清楚地认识到,细菌免疫系统经常通过水平基因转移(HGT)丢失或获得。然而,新的免疫系统是如何以及何时在细菌种群中建立起来的,这在很大程度上仍未得到研究。我们建立了一个流行病学和进化论联合模型,预测了 CRISPR-Cas 免疫系统向缺乏该系统的细菌种群传播的必要条件。我们发现,携带CRISPR-Cas的细菌是否会向细菌种群扩散(频率增加)取决于噬菌体的丰度,以及携带CRISPR-Cas免疫系统的细菌与不携带CRISPR-Cas免疫系统的细菌之间噬菌体抗性机制频率的差异(用${f}_\{Delta }$表示)。具体来说,如果携带CRISPR-Cas的细胞比缺乏CRISPR-Cas的细胞有更高比例的噬菌体抗性(通过CRISPR-Cas免疫或表面修饰),那么携带CRISPR-Cas的细胞数量就会增加。我们以铜绿假单胞菌 PA14 和噬菌体 DMS3vir 为模型,通过实验验证了上述预测。具体来说,通过改变携带替代形式噬菌体抗性的不同菌株的初始比例,我们证实携带 CRISPR-Cas 的细胞在群体中的传播可以根据噬菌体密度和抗性表型的相对频率来预测。了解哪些条件会促进CRISPR-Cas系统的传播,有助于预测在发生水平基因转移事件后,这些防御系统何时何地能在细菌种群中建立起来,无论是在生态环境还是在临床环境中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ISME Journal
ISME Journal 环境科学-生态学
CiteScore
22.10
自引率
2.70%
发文量
171
审稿时长
2.6 months
期刊介绍: The ISME Journal covers the diverse and integrated areas of microbial ecology. We encourage contributions that represent major advances for the study of microbial ecosystems, communities, and interactions of microorganisms in the environment. Articles in The ISME Journal describe pioneering discoveries of wide appeal that enhance our understanding of functional and mechanistic relationships among microorganisms, their communities, and their habitats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信