Doaa Higazy, Anh Duc Pham, Coen van Hasselt, Niels Høiby, Lars Jelsbak, Claus Moser, Oana Ciofu
{"title":"铜绿假单胞菌肺部感染生物膜模型中抗菌药耐药性的体内进化。","authors":"Doaa Higazy, Anh Duc Pham, Coen van Hasselt, Niels Høiby, Lars Jelsbak, Claus Moser, Oana Ciofu","doi":"10.1093/ismejo/wrae036","DOIUrl":null,"url":null,"abstract":"<p><p>The evolution of antimicrobial resistance (AMR) in biofilms has been repeatedly studied by experimental evolution in vitro, but rarely in vivo. The complex microenvironment at the infection site imposes selective pressures on the bacterial biofilms, potentially influencing the development of AMR. We report here the development of AMR in an in vivo mouse model of Pseudomonas aeruginosa biofilm lung infection. The P. aeruginosa embedded in seaweed alginate beads underwent four successive lung infection passages with or without ciprofloxacin (CIP) exposure. The development of CIP resistance was assessed at each passage by population analysis of the bacterial populations recovered from the lungs of CIP-treated and control mice, with subsequent whole-genome sequencing of selected isolates. As inflammation plays a crucial role in shaping the microenvironment at the infection site, its impact was explored through the measurement of cytokine levels in the lung homogenate. A rapid development of AMR was observed starting from the second passage in the CIP-treated mice. Genetic analysis revealed mutations in nfxB, efflux pumps (mexZ), and two-component systems (parS) contribution to CIP resistance. The control group isolates exhibited mutations in the dipA gene, likely associated with biofilm dispersion. In the initial two passages, the CIP-treated group exhibited an elevated inflammatory response compared to the control group. This increase may potentially contribute to the release of mutagenic reactive oxygen species and the development of AMR. In conclusion, this study illustrates the complex relationship between infection, antibiotic treatment, and immune response.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10980832/pdf/","citationCount":"0","resultStr":"{\"title\":\"In vivo evolution of antimicrobial resistance in a biofilm model of Pseudomonas aeruginosa lung infection.\",\"authors\":\"Doaa Higazy, Anh Duc Pham, Coen van Hasselt, Niels Høiby, Lars Jelsbak, Claus Moser, Oana Ciofu\",\"doi\":\"10.1093/ismejo/wrae036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The evolution of antimicrobial resistance (AMR) in biofilms has been repeatedly studied by experimental evolution in vitro, but rarely in vivo. The complex microenvironment at the infection site imposes selective pressures on the bacterial biofilms, potentially influencing the development of AMR. We report here the development of AMR in an in vivo mouse model of Pseudomonas aeruginosa biofilm lung infection. The P. aeruginosa embedded in seaweed alginate beads underwent four successive lung infection passages with or without ciprofloxacin (CIP) exposure. The development of CIP resistance was assessed at each passage by population analysis of the bacterial populations recovered from the lungs of CIP-treated and control mice, with subsequent whole-genome sequencing of selected isolates. As inflammation plays a crucial role in shaping the microenvironment at the infection site, its impact was explored through the measurement of cytokine levels in the lung homogenate. A rapid development of AMR was observed starting from the second passage in the CIP-treated mice. Genetic analysis revealed mutations in nfxB, efflux pumps (mexZ), and two-component systems (parS) contribution to CIP resistance. The control group isolates exhibited mutations in the dipA gene, likely associated with biofilm dispersion. In the initial two passages, the CIP-treated group exhibited an elevated inflammatory response compared to the control group. This increase may potentially contribute to the release of mutagenic reactive oxygen species and the development of AMR. In conclusion, this study illustrates the complex relationship between infection, antibiotic treatment, and immune response.</p>\",\"PeriodicalId\":50271,\"journal\":{\"name\":\"ISME Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10980832/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISME Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/ismejo/wrae036\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae036","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
生物膜中抗菌药耐药性(AMR)的进化已通过体外实验进化进行了多次研究,但很少在体内进行。感染部位复杂的微环境对细菌生物膜施加了选择性压力,可能会影响 AMR 的发展。我们在此报告了铜绿假单胞菌生物膜肺部感染小鼠体内模型中 AMR 的发展情况。嵌入海藻藻酸盐珠中的铜绿假单胞菌在接触或不接触环丙沙星(CIP)的情况下连续进行了四次肺部感染。通过对从 CIP 处理过的小鼠和对照组小鼠肺部回收的细菌种群进行群体分析,以及随后对所选分离菌株进行全基因组测序,评估了每次感染过程中 CIP 耐药性的发展情况。由于炎症在感染部位微环境的形成中起着至关重要的作用,因此我们通过测量肺匀浆中的细胞因子水平来探究炎症的影响。在经过 CIP 处理的小鼠中,从第二阶段开始,AMR 迅速发展。基因分析表明,nfxB、外排泵(mexZ)和双组分系统(parS)中的突变导致了对CIP的耐药性。对照组分离物的 dipA 基因突变可能与生物膜分散有关。与对照组相比,CIP 处理组在最初的两个阶段表现出更强的炎症反应。炎症反应的增加有可能导致致突变活性氧的释放和 AMR 的发展。总之,这项研究说明了感染、抗生素治疗和免疫反应之间的复杂关系。
In vivo evolution of antimicrobial resistance in a biofilm model of Pseudomonas aeruginosa lung infection.
The evolution of antimicrobial resistance (AMR) in biofilms has been repeatedly studied by experimental evolution in vitro, but rarely in vivo. The complex microenvironment at the infection site imposes selective pressures on the bacterial biofilms, potentially influencing the development of AMR. We report here the development of AMR in an in vivo mouse model of Pseudomonas aeruginosa biofilm lung infection. The P. aeruginosa embedded in seaweed alginate beads underwent four successive lung infection passages with or without ciprofloxacin (CIP) exposure. The development of CIP resistance was assessed at each passage by population analysis of the bacterial populations recovered from the lungs of CIP-treated and control mice, with subsequent whole-genome sequencing of selected isolates. As inflammation plays a crucial role in shaping the microenvironment at the infection site, its impact was explored through the measurement of cytokine levels in the lung homogenate. A rapid development of AMR was observed starting from the second passage in the CIP-treated mice. Genetic analysis revealed mutations in nfxB, efflux pumps (mexZ), and two-component systems (parS) contribution to CIP resistance. The control group isolates exhibited mutations in the dipA gene, likely associated with biofilm dispersion. In the initial two passages, the CIP-treated group exhibited an elevated inflammatory response compared to the control group. This increase may potentially contribute to the release of mutagenic reactive oxygen species and the development of AMR. In conclusion, this study illustrates the complex relationship between infection, antibiotic treatment, and immune response.
期刊介绍:
The ISME Journal covers the diverse and integrated areas of microbial ecology. We encourage contributions that represent major advances for the study of microbial ecosystems, communities, and interactions of microorganisms in the environment. Articles in The ISME Journal describe pioneering discoveries of wide appeal that enhance our understanding of functional and mechanistic relationships among microorganisms, their communities, and their habitats.